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Abstract

This paper describes a lightweight neural text-to-speech
system for the German language. The system is composed
of a non-autoregressive spectrogram predictor, followed by
a recently proposed neural vocoder called StyleMelGAN.
Our complete system has a very tiny footprint of 61 MB
and is able to synthesize high-quality speech output faster
than real-time both on CPU (2.55x) and GPU (50.29x).
We additionally propose a modified version of the vocoder
called Multi-band StyleMelGAN, which offers a signifi-
cant improvement in inference speed with a small trade-
off in speech quality. In a perceptual listening test with
the complete TTS pipeline, the best configuration achieves
a mean opinion score of 3.84 using StyleMelGAN, com-
pared to 4.23 for professional speech recordings.

1 Introduction

The recent success of neural text-to-speech (TTS) systems
combining sequence-to-sequence (S2S) spectrogram pre-
dictors with neural vocoders has led to remarkable improve-
ments in the attainable quality of synthesized speech. In
this work, we introduce a lightweight neural TTS system
optimized for synthesizing natural speech output in Ger-
man. It achieves a competitive Mean Opinion Score (MOS)
with a tiny footprint of 61 MB and faster than real-time
synthesis speed. There are three main aspects to our ap-
proach: First, our acoustic model is based on Forward-
Tacotron (FT) for mel-spectrogram prediction in a non-
autoregressive S2S fashion. Second, we employ StyleMel-
GAN (SMG) [1], a novel and extremely efficient neural
vocoder based on Generative Adversarial Networks (GANs).
In Fig. 1, we provide a general overview of the two neu-
ral networks, which we explain in more detail in Sec. 2.1
and Sec. 3.3. Our main contribution is to show that the
combination of these models yields an efficient, yet pow-
erful neural TTS system for German language. Inspired by
[2], we propose a modified Multi-band version of SMG as
an additional contribution (see Sec. 3.4). The third ingre-
dient of our system is the proprietary training dataset. We
train both our acoustic model and our neural vocoder with a
meticulously annotated German speech corpus comprising
more than 20 hours of professional recordings from both
female and male voice talents. For evaluation, we conduct
a P.808 Absolute Category Rating (ACR) subjective listen-
ing test to assess the perceived speech quality. The experi-
mental settings are detailed in Sec. 4. Our results presented
in Sec. 5 corroborate the high-quality speech synthesis ca-
pabilities of our proposed system. In addition, we compare
the computational requirements of the neural vocoders un-
der test.

2 Acoustic Models

Acoustic models convert textual input (phoneme or graph-
eme tokens) to acoustic feature sequences, such as mel-
spectrograms. Since this mapping is a S2S problem, most
of the existing approaches (e.g., Tacotron [3, 4]) rely on
autoregressive encoder-decoder frameworks. Commonly,
there is also an attention mechanism between the encoder
and decoder to estimate a temporal alignment of the tokens
to the acoustic features. However, there are two known
problems when using the encoder-attention-decoder mech-
anism for TTS: First, the generation speed is slow due
to the autoregressive generation. Second, the generated
speech may exhibit skipped or repeated tokens and is diffi-
cult to control on a finer level (e.g., speech rate and prosody).
To alleviate these problems, non-autoregressive, duration-
based acoustic models [5–9] have been proposed. As those
approaches do not use attention mechanisms, the speech
feature generation is both robust and controllable. Fur-
ther, they are fast in inference, as the acoustic features are
generated in parallel. In a return to classic TTS training
principles, the authors of FastSpeech [5] introduced the
combination of a duration predictor and length regulator to
solve the problem of length mismatch between phoneme
and mel-spectrogram sequences. The duration predictor is
trained to estimate the duration of each phoneme in the in-
put sequence. This information is then used by the length
regulator to upsample (i.e., replicate) phoneme embedding
vectors to match the sequence length to the desired mel-
spectrogram. As a nice side-effect, the length regulator can
be parameterized to control the speech rate and prosody.
The complete FastSpeech model is trained jointly with the
duration predictor module. The ground truth phoneme du-
rations necessary for training are extracted from the atten-
tion matrix of a pre-trained autoregressive acoustic model.
In contrast, AlignTTS [6], JDI-T [7], and EfficientTTS
[8] train alignment networks jointly with their S2S mod-
els and extract durations from their alignment networks
to train their duration predictors. For phoneme sequence
upsampling, AlignTTS and JDI-T use the length regulator
[5], whereas EfficientTTS uses a Gaussian kernel approach
[8]. A completely different approach can be found in [9],
where EATS combines an aligner network with the GAN-
TTS [10] vocoder and trains them adversarially with a dis-
criminator. The aligner of GAN-TTS estimates phoneme
durations in time domain and calculates alignment vectors.
To help the adversarial training, Soft-DTW [11] is used as
the reconstruction loss between random fixed length blocks
of generated and ground truth spectrograms.

2.1 ForwardTacotron

In this paper, we use FT [12] and extend it to predict multi-
speaker mel-spectrograms. The top part of Fig. 1 gives
more insight into the architecture, which was devised by
the original author as a realization of the FastSpeech prin-
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Figure 1: Simplified overview of the proposed TTS system with the ForwardTacotron acoustic model and StyleMel-
GAN vocoder shown as gray boxes. Neural building blocks are displayed in rounded boxes (stacking of layers shown
by repeat), the data flowing between them are represented as smaller rectangular boxes. In particular, there are (a)
Input speaker identity (b) Color-coded input phoneme sequence (c) Corresponding phoneme embedding sequence (color-
coded), concatenated with replicated speaker embedding (purple) (d) Length regulated phoneme and speaker embedding
sequence (e) Predicted mel-spectrogram (f) Low-dimensional noise prior (g) Output speech signal.

ciple with neural building blocks inspired by Tacotron [3,
4]. At the input, we provide unique speaker identifiers and
phoneme sequences (including white spaces and other sen-
tence marks). Independently trainable embedding layers
convert those to hidden representations, which are con-
catenated after CBHG processing. In Fig. 1, the result-
ing speaker embeddings are visualized as purple column
vectors, while the different phoneme embedding vectors
are color-coded to show the correspondence to the input
phoneme sequence. Prior to the pre-net, the phoneme em-
beddings directly serve as input to the duration predictor.
While it seems counter-intuitive to make the phoneme du-
ration prediction independent of any speaker embeddings,
we still have the possibility to realize speaker-specific speech
rates later in the length regulator. During FT training, the
alignment matrices of a pre-trained Tacotron 2 [4] model
are used to extract phoneme durations (measured in mel-
spectrogram frames). This is an inexpensive alternative to
having expert phoneticians provide ground truth phoneme
segmentations.

3 Vocoder Models

As shown in several studies [13, 14], state-of-the-art neu-
ral vocoders outperform classical signal-processing meth-
ods [15–17] using compact speech representations, such as
mel-spectrograms. So far, computationally-heavy models
like WaveNet [18] and WaveGlow [19] achieved best re-
sults, while light-weight GAN models, e.g., MelGAN [20],
Parallel WaveGAN [21] and Multi-band MelGAN [2] re-
main inferior in terms of perceptual quality. In the follow-
ing sections, we describe the vocoders taken into consider-
ation for subjective quality assessment of our TTS system
(see Section 4). We give a more detailed account of SMG
as this approach is a recent publication [1].

3.1 Phase Gradient Heap Integration

Phase Gradient Heap Integration (PGHI) was proposed in
[16] as an efficient means for deriving phase spectrograms

from Short-Time Fourier Transform (STFT) magnitude spec-
trograms. It uses estimates of the instantaneous frequency
as well as instantaneous time (i.e., the full phase gradi-
ent) that can be approximated by the log-magnitude gra-
dient under certain conditions. In this paper, we first con-
vert predicted mel-spectrograms (see Sec. 2.1) to the mag-
nitude STFT domain by frame-wise pseudo-inverse map-
ping from the mel-frequency scale. To remedy strong over-
smoothing in the high frequency range, we multiply a noise
term above 2.2 kHz. We then estimate corresponding phase
spectrograms by PGHI before signal reconstruction [15].

3.2 WaveGlow

WaveGlow (WGLO) [19] uses normalizing flows to gradu-
ally transform a noise sequence into a speech waveform. It
combines the flow-based approach of Glow [22] with the
autoregressive WaveNet [18] architecture. The flow-based
generative model provides tractability of exact log-likelihood
and efficiently parallelizes both training and inference. In
our earlier work [14], we identified WGLO as suitable for
TTS as it yields perceptual quality scores close to WaveNet
at faster than real-time inference speed on GPUs.

3.3 StyleMelGAN

The recently proposed SMG [1] is a lightweight neural
vocoder for reconstructing speech from mel-spectrograms
by styling a low-dimensional noise prior with the acous-
tic features of the target speech. It is characterized by its
low complexity while still generating high-quality speech.
Its main structure is a GAN comprising a generator and
a discriminator network. The generator gradually trans-
forms a noise vector into a speech signal using Tempo-
ral Adaptive DEnormalization (TADE), a technique first
used in image processing [23]. This is done by upsampling
the noise vector through a series of building blocks called
TADE residual blocks (TADEResBlocks) as shown in the
lower part of Fig. 1. These TADEResBlocks mainly con-
sist of two TADE layers which are conditioned on the mel-
spectrogram. As detailed in Fig. 2, each TADE layer ap-
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Figure 2: TADE layer architecture of StyleMelGAN. The
learned modulation parameters γ and β have the same di-
mensionality as the normalized activation c. The symbol
� indicates the pointwise multiplication. (a) Conditioning
mel-spectrogram (b) Input activation (c) Normalized input
activation (d) Output activation.

plies a linear modulation of the upsampled mel-spectrogram
to the input vector c through the trainable modulation pa-
rameters γ and β. In each block, c is normalized using in-
stance norm [24] before being subjected to point-wise mul-
tiplication with γ and translation by β. The output of the
TADEResBlock is computed from the sequence of TADE
blocks and a skip connection from the input vector. The
generator network is constructed by stacking a combina-
tion of TADEResBlocks and upsampling layers (upsample
by factor two) eight times, a final TADEResBlock and a
convolutional layer with tanh non-linearity. The training
of the generator is guided by an adversarial loss which is
computed by the discriminator network. For the discrim-
inator, an ensemble of four discriminator networks (each
based on [2]) is used. The input of the discriminators are
random windows sliced from the target speech signal, sim-
ilar to [10]. These random segments are then decomposed
by Pseudo Quadrature Mirror Filter-bank (PQMF) [25], in
order to analyze the frequency bands of the signal. Both
the length of the speech segments and the number of sub-
bands for the PQMF differ between the discriminators in
the ensemble (512/1024/2048/4096 samples per segment,
1/2/4/8 subbands for PQMF). Following the PQMF, there
is a convolutional layer and a sequence of three blocks con-
sisting of a 1D convolution, a LeakyReLU and a down-
sampling operation. Finally, there is a 1D convolution, a
LeakyReLU and a convolutional layer. For training the
GAN, first only the generator is pretrained using the spec-
tral reconstruction loss. Then, the generator and the dis-
criminator are trained together which helps to obtain more
natural speech signals. For the loss of the generator, the
sum of the adversarial loss from the discriminator and the
spectral reconstruction loss is used in order to prevent ad-
versarial artifacts. Due to its low complexity, SMG is ca-
pable of synthesizing speech signals with 22.05 kHz more
than 50 times faster than real-time on GPU. In our earlier
paper [1], the quality of the synthesized speech was evalu-
ated using Fréchet scores and listening tests. By computing
the conditional Fréchet Deep Speech Distance [10, 26], we
showed that SMG outperforms other vocoders. A MUltiple
Stimuli with Hidden Reference and Anchor (MUSHRA)

Condition Description

FT + PGHI FT + Phase Gradient Heap Integration
FT + WGLO FT + WaveGlow
FT + MBSMG FT + Multi-band StyleMelGAN
FT + SMG FT + StyleMelGAN
REF Reference speech recordings

Table 1: Synthesis conditions under test. Here, FT stands
for ForwardTacotron.

listening test for copy-synthesis showed that SMG outper-
forms other vocoders by about 15 MUSHRA points. To
also evaluate SMG in a TTS scenario, a P.800 [27] lis-
tening test was performed where it achieved a MOS of
4.00±0.06, outperforming other models.

3.4 Multi-band StyleMelGAN

Based on SMG, we developed Multi-band StyleMelGAN
(MBSMG). As shown in Fig. 3, the generator of MBSMG
is similar to the generator of SMG. In contrast to Fig. 1, we
depict the signal flow going from left to right for the sake
of clarity. As a main difference, the last two TADERes-
Blocks are not followed by an upsampling layer resulting
in a tensor with one quarter the size compared to the SMG
case. Thus, the final convolutional layer reduces the num-
ber of channels to 4. These 4 subbands are then combined
to the final speech signal by a PQMF synthesis layer. So
instead of directly computing the complete speech signal,
4 subbands are computed and combined by a PQMF. This
modified structure of the generator leads to a higher syn-
thesis speed compared to the generator structure of SMG.
The reason for this speed-up is that especially the last two
TADEResBlocks of SMG are computationally expensive
which is improved in MBSMG by reducing the data di-
mensions in these layers.

4 Experiment

For our experiments, we compared different versions of
our proposed TTS system by keeping the same acoustic
model (i.e., FT) while exchanging the vocoder models. The
5 different test conditions are explained in Tab. 1.

4.1 Corpus and Audio Processing

We use a proprietary dataset which comprises 20 hours of
speech recordings performed by two native German speak-
ers in studio recording conditions. 48% of the dataset is
spoken by a professional female voice actor and the re-
maining part by a professional male voice actor. The orig-
inal recordings are encoded as 32-bit mono PCM with a
sampling rate of 48 kHz. For training, all speech signals
were resampled to 22.05 kHz. Further preprocessing in-
volved DC offset removal and max normalization. Mel-
spectrograms with 80 bands were extracted for each speech
signal (using 46.4 ms block size and 11.6 ms hop size) in
the frequency range 0 kHz to 8 kHz. For WGLO, we used
a pretrained model 1 for warmstarting and then continued
to train with our proprietary dataset. Both SMG and MB-
SMG were trained from scratch using our dataset.

1https://ngc.nvidia.com/catalog/models/nvidia:
waveglow_ljs_256channels
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Figure 3: Generator architecture of Multi-band StyleMelGAN (MBSMG). (a) Conditioning mel-spectrogram (b) Low-
dimensional noise prior (c) Generated speech sub-band signals (d) Generated speech signal.

Condition Average Male Female

FT + PGHI 1.3 ± 0.04 1.17 ± 0.04 1.41 ± 0.07
FT + WGLO 2.72 ± 0.07 2.26 ± 0.09 3.17 ± 0.1
FT + MBSMG 3.38 ± 0.07 3.21 ± 0.1 3.54 ± 0.09
FT + SMG 3.84 ± 0.06 3.79 ± 0.09 3.9 ± 0.09

Reference 4.23 ± 0.06 4.32 ± 0.08 4.13 ± 0.09

Table 2: MOS-scores with 95% confidence intervals for
male and female speakers along with average scores.

4.2 Setup and Participants

The subjective evaluations for the TTS pipelines were done
using a P.808 ACR listening test [28] by crowdsourcing.2
The test was performed by 36 German native speakers with
an average age of 35.75 years (±11.26). 15 participants
were recruited through Amazon Mechanical Turk (MTurk)
[29]. On average, the participants took 15 minutes to fin-
ish the test. WebMUSHRA [30], a popular framework for
conducting web-based listening tests, was customized for
a 5-point MOS scale. This framework was hosted on a pri-
vate domain with the help of Amazon Web Services [31].
In accordance with the P.808 recommendations, the MTurk
workers were tested for native-level fluency, subjected to
multiple gold standard questions during the test and had to
undergo a hearing screening task to ensure wearing head-
phones. The subjective evaluation was divided into two
phases: Training and Testing. The training phase allowed
the participants to familiarize themselves with the audio
quality provided by different systems under test and the
user interface of WebMUSHRA. We selected two items
for this phase and ten for the testing phase. These items
were synthesized both in male and female voices for all
the test conditions (see Tab. 1), leading to a total of 120
items. The participants rated these items independently,
based on naturalness and intelligibility, hence there was no
direct comparison between the conditions while assigning
scores.

5 Results and Conclusion

Tab. 2 compares the obtained MOS-scores of all systems
under test. The results clearly show that the combination of
FT + SMG outperforms all the other systems and can gen-
erate high-quality speech with a MOS of 3.84. In line with
the expectations, neural vocoders like SMG, MBSMG and

2Speech items used in the listening test are available at:
https://www.audiolabs-erlangen.de/resources/
NLUI/2021-FT-SMG-TTS

Condition Spect.
type

Model Size
(in MB)3

#Param.
(in M)4

RTF

CPU GPU

FT + PGHI Linear - - 15.48 39.68
FT + WGLO Mel 170 86.3 0.57 8.75
FT + MBSMG Mel 15 3.85 4.35 61.27
FT + SMG Mel 15 3.85 2.55 50.29

Table 3: Model size, parameter count and real-time factor.
Here, we report a combined RTF of acoustic model and
neural vocoder, the higher the better. The inference speed
was measured on CPU (Intel Core i7-8700K 3.70 GHz)
and a single GPU (NVIDIA GeForce GTX 1080 Ti).

WGLO have an obvious advantage over phase reconstruc-
tion based methods. It is worth noting that both SMG and
MBSMG achieved much better scores for synthesizing the
male voice in comparison to WGLO. On closer inspection,
we found that they yielded more clarity and coherence in
the pitched parts of male speech, whereas WGLO some-
times tended to produce noisy and trembling sound. The
current results are not directly comparable to our earlier
findings in [1], since we used a German dataset and FT as
acoustic model.

In order to compare the model complexity, the mem-
ory consumption, the number of trainable parameters, and
the real-time factors are summarized in Tab. 3. Although
the model size remains the same for FT + SMG and FT +
MBSMG, the latter has a noticeable increase in real-time
factor at the cost of a dip in speech quality.

In summary, our proposed TTS system yields compet-
itive results in comparison to other state-of-the-art TTS
methods. Future work will be directed towards further op-
timization of the computational requirements.
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