
Real time implementation of Vector Delay Lock
Loop on a GNSS receiver hardware with an open

software interface

Katrin Dietmayer, Muhammad Saad, Christian Strobel, Dr. Fabio Garzia,
Matthias Overbeck and Dr. Wolfgang Felber
Fraunhofer Institute for Integrated Circuits (IIS)

Nuremberg, Germany

katrin.dietmayer@iis.fhg.de

Abstract—In standard GNSS receivers scalar tracking is used
to track the satellite signals. In this approach each signal and
satellite is tracked independently. The vector tracking (VT)
algorithm uses information about the movement of the antenna
to calculate a combined tracking solution for all signals. This
makes the tracking more stable and robust against shadowing
and multipath effects. It delivers an improved navigation solution,
which is less noisy. Present developments in VT have already
shown good results in post processing with software-defined
radio (SDR). This paper presents the results of the real-time
VT developed on a GNSS hardware platform. The theory and
the implementation of the used Kalman filter (KF) is described.
The hardware setup, using a GNSS receiver with an open
software interface is presented. First results using vector delay
locked loop (VDLL) in a signal generator scenario with short-
shadowed satellites are shown. It is described how the VDLL
with an extended Kalman filter (EKF) calculates a navigation
solution. This output is then used to compute the code numerical
correlation oscillator (NCO) values for multiple space vehicles
simultaneously and to steer the hardware NCOs in the receiver
to close the tracking loops. The code tracking loops have to be
closed simultaneously and as fast as possible to avoid timing
issues.

Index Terms—vector tracking (VT), vector delay locked loop
(VDLL), tracking loops

I. INTRODUCTION

GNSS receivers use tracking loops to lock onto satellite

signals by synchronizing the satellite signal with a local-

generated replica [1]. In a standard receiver each signal is

tracked independently, hence this is referred to as scalar

tracking. The GNSS receiver hardware provides correlator

values. Independent code and carrier tracking loops calculate

new setting values to adjust the estimates of the code phase

and carrier frequency for a single tracking channel. The new

estimates steer the code and carrier numerical correlation oscil-

lator (NCO) to obtain a stable reference for the received signal

and to close the loop. If at least four satellites are tracked

and their pseudorange and pseudorange-rate measurements ob-

tained, a navigation solution can be calculated. This navigation

solution does not have a direct influence on the tracking loops.

In weak signal conditions, e.g. caused by shadowing of the

satellite, scalar tracking loops are likely unstable and can loose

the signal tracking. For availability critical applications, like

autonomous driving, a robust navigation solution is one of the

most important aspects. Weak signal conditions often occur in

urban environments, e.g. passing by high buildings.

The approach presented in this paper controls multiple

tracking loops simultaneously and in relation to each other.

This is called vector tracking (VT) [2]. The signal tracking

and navigation solution calculation are combined together to

a single estimation algorithm. Hence they are highly related on

each other. In challenging environments, VT architectures with

SDRs have shown to provide better performance over scalar

tracking [3]. This is mainly because the channels tracking

strong signals can support the channels with weak signals.

VT uses the movement information of the antenna phase

center to calculate a combined tracking solution for all signals

collectively. Therefore a Kalman filter (KF) is used to estimate

a navigation solution which is adjusted with the correlator val-

ues from the GNSS hardware. From the estimated navigation

solution, new NCO control values for multiple satellite signals

are determined simultaneously. These are then passed back to

steer the hardware NCOs in the GNSS receiver to close the

tracking loop.

The real-time development of VT on a GNSS hardware

receiver has many challenges over the often used software-

defined radio (SDR). SDRs mainly operate in post processing,

hence they have no timing requirements. The VT loop in

GNSS hardware has to be closed simultaneously for all

channels and as fast as possible to avoid timing issues. It

is important to take the whole system into account when

developing VT in real-time. Effects on processing delays can

contribute to timing issues. System and measurement noise

have to be modelled correctly according to the used hardware

and environment.

II. VECTOR TRACKING DELAY LOCK LOOP

The vector delay locked loop (VDLL) is one variant of VT,

where the carrier tracking loops are still scalar and the code

tracking loops are combined to a single tracking algorithm, as

shown in Fig. 1. The navigation solution is estimated by a KF,978-1-5386-9473-2/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on February 05,2021 at 09:13:58 UTC from IEEE Xplore. Restrictions apply.

HW

carrier tracking loop

code discriminator

EKF

NCO calculation

Fig. 1. Vector Delay Lock Loop.

called the states x̂. The following parts denote estimates with

“ˆ”. A KF has two main phases, mostly called the prediction

and update phase. For these phases a system and measurement

model needs to be defined. The system model describes how

the state propagate with time. The measurement model shows

the relationship between the measurements and the states of

interest. For a GNSS navigation filter, the measurements are

not a linear function of the states, therefore an extended

Kalman filter (EKF) is used. The measurements are available

at discrete time intervals. The subscript k is used to denote

the epoch or iteration, therefore x(tk) = xk.

A. Kalman filter algorithm

During the prediction phase, the EKF estimates a new state

vector x̂k|k−1 based on the updated state x̂k−1|k−1 of the

previous iteration. Therefore a transition matrix φk−1 has to

be defined. Additionally an error covariance matrix Pk|k−1

tracks the variances and covariances of each state estimate.

To estimate Pk|k−1 the previous matrix Pk|k and a system

noise covariance matrix Qk−1 is used. After this phase, the

states and error covariances are propagated from the iteration

k − 1 to k. The system is then updated with measurements

during the update phase. Therefore the interaction of the

measurements and the states is defined in a measurement

matrix Hk. The measurement noise is taken into account with

a measurement noise covariance matrix Rk. The states x̂k|k−1

are then updated by the measurement innovation, defined as

δzk|k−1. In the last step of the update phase, the updated error

covariance matrix Pk|k is calculated. Fig. 2 shows the work

flow of an EKF. A more detailed description of the KF states

includes [2].

1) Prediction phase
• Propagate the state vector

x̂k|k−1 = Φk−1x̂k−1|k−1

• Propagate the error covariance matrix

Pk|k−1 = Φk−1Pk−1|k−1Φ
t
k−1 +Qk−1

2) Update phase
• Calculate the measurement innovation

δzk|k−1 = zk −Hkx̂k|k−1

Pk−1|k−1

→
Pk|k−1

xk−1|k−1

→
xk|k−1

xk|k−1

→
xk|k

Pk|k−1

→
Pk|k

prediction update

yk

Sk

innovation

Fig. 2. Extended Kalman filter work flow.

• Calculate the error covariance innovation

Sk = HkPk|k−1H
t
k +Rk

• Calculate the Kalman gain

Kk = Pk|k−1H
t
kS

−1
k

• Update the state vector

x̂k|k = x̂k|k−1 +Kkδzk|k−1

• Update the error covariance matrix

Pk|k = (I −KkHk)Pk|k−1

B. System Model

The following paragraph describes the tracked states and

the system model, everything is described detailed in [2]. The

states of interest are the users position, velocity, clock bias

and drift. The user position and velocity are observed in the

Earth-centred Earth-fixed frame with the corresponding x, y
and z axes. The states are given as:

• position p = (px, py, pz)
t,

• velocity v = (vx, vy, vz)
t,

• clock bias b, and

• clock drift d.

With respect to time t we get the state vector:

x(t) = (p(t), v(t), b(t), d(t))t

and in discrete time:

xk = (pk, vk, bk, dk)
t

It is necessary to know how the states xk change with time.

Therefore, the derivation of the states with respect to time t are

calculated. Initially a constant velocity model is chosen, hence

all accelerations are modelled as white gaussian noise. One

assumption of the standard KF is that the time derivative of

each state is a linear function of the other states with additional

white noise. The EKF on the other hand can handle non-linear

systems, and the dynamics of the state are described by a non-

linear system function f instead of a system matrix F , hence:

ẋ(t) = f(x(t), t)x(t) +G(t)ws(t)

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on February 05,2021 at 09:13:58 UTC from IEEE Xplore. Restrictions apply.

where G is the system noise matrix and ws the system noise

vector. For the error covariance matrix propagation, the system

matrix is linearised by calculating the Jacobian of the system

matrix with:

Fk =
∂f(xk, tk)

∂x

∣∣∣∣
x=x̂k−1|k−1

From the system matrix, the transition matrix Φ can be

derived. The time between the iteration k−1 and k is denoted

with δt, so that Φ becomes:

Φk = I8 + Fkδt

The system model with the constant velocity model assump-

tion is simple to define. The derivation of the position with

respect to time is the velocity, and for the clock bias the clock

drift respectively. As the velocity and clock drift are indepen-

dent of all components of the state vector, the expectations of

the time derivative is zero. Hence the system matrix is:

Fk =

⎛
⎜⎜⎝
03×3 I3 03×1 03×1

03×3 03×3 03×1 03×1

01×3 01×3 0 1
01×3 01×3 0 0

⎞
⎟⎟⎠

and the system transition matrix is:

Φk =

⎛
⎜⎜⎝

I3 I3δt 03×1 03×1

03×3 I3 03×1 03×1

01×3 01×3 1 δt
01×3 01×3 0 1

⎞
⎟⎟⎠

The error covariant matrix Q shows how the noise changes

in the system with respect to time. The largest impact of un-

certainties in the system are the changes in velocity and clock

drift. For velocity it is the untracked impact of acceleration

a, that causes an error. The receiver clock frequency drift f
causes a clock drift error and the receiver clock phase drift φ
on the clock offset. Therefore the system noise matrix G is:

Gk =

⎛
⎝03×3 03×3 03×2

03×3 I3 03×2

02×3 02×3 I2

⎞
⎠

with the noise vector ws = (01×3, ea, eφ, ef)
t, where ef de-

scribes the frequency-drift, eφ the clock phase-drift uncertainty

and ea the acceleration uncertainties in each direction. We

assume to have white system noise, therefore we can use the

single sided PSD matrix of the components of the system noise

vector ws, S which is a diagonal matrix, so that:

S =

⎛
⎜⎜⎝
03×3 03×3 03×1 03×1

03×3 Sa 03×1 03×1

01×3 01×3 Sφ 0
01×3 01×3 0 Sf

⎞
⎟⎟⎠

and

Sa =

⎛
⎝Sx 0 0

0 Sy 0
0 0 Sz

⎞
⎠

The system noise covariance matrix can be defined in different

ways. One is to define the noise matrix in terms of the contin-

uous system noise. Together with the white noise assumption

and the PSD matrix S, Q is calculated as:

Q(t) =

∫
Φ(t) ∗G ∗ S ∗Gt ∗ Φt(t)dt

=

⎛
⎜⎜⎝

1
3Sat

3 1
2Sat

2 03×1 03×1
1
2Sat

2 Sat 03×1 03×1

01×3 01×3 Sφt+
1
3Sf t

3 1
2Sf t

2

01×3 01×3
1
2Sf t

2 Sf t

⎞
⎟⎟⎠

C. Measurement Model
The measurement model shows the relationship between

the measurements and the states. A detailed derivation can be

found in [2] again. In a standard KF measurement vector z(t)
is modelled as a linear function of the true states. In discrete

time zk is defined as:

zk = Hkxk + wm,k

where H is the measurement matrix and wm the measurement

noise, normally assumed to be white noise. In a GNSS

application the model is highly nonlinear, therefore the matrix

H is replaced with a measurement function h(xk, tk), so that

zk becomes:

zk = h(xk, tk) + wm,k

The innovation δz is then:

δzk|k−1 = zk − h(x̂k|k−1, tk)

= h(xk, tk)− h(x̂k|k−1, tk) + wm,k (1)

where zk denotes the real measurements and h(x̂k|k−1, tk) are

the predicted measurements derived from the predicted state

vector x̂k|k−1.
In a GNSS receiver, for each visible and tracked satellite

signal j the pseudorange ρ and the pseudorange-rate ρ̇ is

commonly measured. Therefore the predicted pseudorange and

pseudorange-rate with the EKF states are calculated as:

ρ̂jk|k−1 = |pjs,k − p̂k|k−1|+ b̂k|k−1

˙̂ρjk|k−1 = ût
k|k−1|vjs,k − v̂k|k−1|+ d̂k|k−1

with the satellite position pjs,k and velocity vjs,k. Hence the

measurement function for N satellites is:

h(x̂k|k−1, tk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̂1k|k−1

...

ρ̂Nk|k−1
˙̂ρ1k|k−1

...
˙̂ρNk|k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As the system matrix, the measurement matrix H needs to

be linearised. Therefore the Jacobian derivatives have to be

calculated as:

Hk =
∂h(x, tk)

∂x

∣∣∣∣
x=x̂k|k−1

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on February 05,2021 at 09:13:58 UTC from IEEE Xplore. Restrictions apply.

Hρp =
∂ρk
∂pk

=
(ps,k − pk)

|ps,k − pk| (2)

Hρ̇p =
∂ρ̇k
∂pk

= − 2

|ps,k − pk| (ṗs,k − ṗk) (3)

Hρ̇v =
∂ρ̇k
∂vk

= − ps,k − pk
|ps,k − pk| (4)

∂ρk
∂vk

= 0 (5)

∂ρk
∂bk

= 1 (6)

∂ρk
∂dk

= 0 (7)

∂ρ̇k
δbk

= 0 (8)

∂ρ̇k
∂dk

= 1 (9)

With equations (2) – (9) the Jacobian measurement matrix

Hk is defined as:

Hk =

(
Hρp 0 1 0
Hρ̇p Hρ̇v 0 1

)∣∣∣∣
x=x̂k|k−1

As the pseudorange-rate has a weak dependency on the

position, the Hρ̇p terms can be neglected as shown in [2]. For

the real-time implementation, the measurements given from

the GNSS hardware should be used to update the EKF. In the

VDLL, a separate scalar carrier frequency loop is running for

each satellite. Hence inputs for the EKF are the code phase

and pseudorange-rate measurements. The innovation vector

δzk|k−1 for the pseudorange can directly be replaced with

the discriminator function of the code phase. A non-coherent

normalised early minus late envelope discriminator, like in [4],

is used to calculate the code tracking error ϕk for each satellite

j as:

δzjk|k−1,ρ = ρjk − ρ̂jk + wj
m,k

≈ − c

fco
ϕj
k

with the code frequency fco and the speed of light c. Therefore

the measurement function h(x̂k|k−1, tk) is zero for the pseu-

dorange, because δzjk|k−1,ρ already contains the pseudorange

error.

To take the noise of the measurements into account, the

measurement noise covariance matrix R is defined. Depending

on the implementation level and the filter, the R matrix can be

modelled as diagonal and constant or as a function of known

dynamics of the system. It is often necessary to determine

some coefficients for the R matrix empirically. If the carrier-

to-noise density ratio (C/N0), of each signal is used, the

measurement noise covariance matrix is optimally weighted

in the VDLL, see [2]. More Information about C/N0 can be

found e.g. in [1].

D. NCO Control Algorithm

To steer the hardware and closing the loop, new NCO

have to be calculated. The independent scalar carrier loop

calculates new carrier NCO values and provides these to the

hardware, and the VDLL new code NCO values. The best feed

back time for the code NCO values is directly after the EKF

measurement update. To calculate new code NCO values the

state vector is used. The new code NCO for the jth signal is

f̂ j
co,k+1 = fco

(
1−

ρ̂jk+1|k − ρ̂jk|k−1

cτ

)
(10)

with the code frequency fco, the update interval τ and c
the speed of light. The pseudorange ρ̂jk for the signal j at

the iteration k is calculated with the position and clock bias

estimation from the predicted EKF states

ρ̂jk|k−1 = |pjs,k − p̂k|k1|+ b̂k|k−1 + eI,k + eT,k − ec,k

where the satellite position pjs,k and clock offset ec,k is ob-

tained from the ephemeris data, the Ionospheric error eI,k and

the Tropospheric error eT,k can be calculated using models.

Depending on the system there might be a significant time

lag between calculation and validity of the new NCO values.

This includes the time taken to get the GNSS measurements,

update interval, time to calculate the new NCO values and to

steer the hardware. Therefore, it has to be considered during

the implementation in order not to lose data or get timing

issues.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

A. GOOSE

In order to test the VDLL algorithm, the multi-signal and

multi-constellation GNSS receiver with an open interface

“GOOSE”, developed by Fraunhofer Institute (IIS) [5], is

used. It is based on a modular approach and the idea is that

different modules can be used with the same receiver setup. It

is composed of a geodetic antenna with a stable phase center as

well as an analog front-end which allows L1, L2 and L5 GNSS

signal bands to be processed. The baseband board equipped

with a Xilinx 7-series field-programmable gate array (FPGA)

supports 90 parallel hardware channels and uses a dual core

ARM Cortex A9 processor having a PCIe interface.

The correlation data from the baseband board is sent via an

open interface to the processing system, where the VDLL and

KF algorithm is developed. Furthermore, the calculated NCO

values from the VDLL are sent back to the baseband via the

same open interface. For more information see [6] and [7].

B. Real-time implementation

For real-time implementation and testing the GOOSE re-

ceiver is used. To start with a VDLL the EKF has to be

initialized with a valid navigation solution. The position,

velocity, clock bias and drift are calculated by scalar tracking

loops and a single epoch position, velocity, and time (PVT)

algorithm. As a total state EKF is used the error covariance

matrix P has to be initialised with values, which should

reflect the variance of the initialisation process. These values

could be determined empirically or by evaluating the receiver

navigation solution with a standard approach. It is valid to

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on February 05,2021 at 09:13:58 UTC from IEEE Xplore. Restrictions apply.

initialize the clock drift at zero, which then needs to be

reflected in the initial uncertainty with a higher variance. This

approach is also chosen for the implementation on the GOOSE

receiver.

For the tests, GPS L1 C/A signals are simulated with

a Spirent GSS9000 GPS/GNSS Signal Generator. The GPS

satellite signal characteristics are described in [1]. After a

successful acquisition of the signal the hardware provides the

correlation values with 50 Hz as an integration time of 20 ms

is selected. The correlation values of each signal are provided

in every 20 ms burst. The GPS satellites are synchronised,

hence if their internal clock errors are neglected, all satellites

transmit their signals at the same time, the time of transmission

(tot). However, the actual transmission time is not generally

the same because of the satellite clock errors. With real signals

this could lead to some timing issues. Here only simulated

signals with no satellite clock errors are used, hence this error

is negligible for now.

The signals are received at different times. In one burst

the GOOSE hardware provides the correlation values for

each signal at the specific time of arrival (toa). As the EKF

processes a full set of measurements, the correlation values in

one burst have to be saved until the information of all satellites

is received, normally from the furthest tracked satellite, shown

in Fig. 3. Therefore the update interval τ from equation (10)

is different for each channel dependent on the signal arrival

times. It also needs to be mentioned, that it is possible to

perform a scalar measurement update but therefore the EKF

design has to be changed. As the code tracking is more relaxed

with time correlated errors, the vector measurement update is

used.

Another approximation is the propagation of 20 ms ahead of

the state vector. The estimated states refer to the next signal

arrival times, which is not exactly 20 ms ahead because of

relative motion between the satellites and the receiver and

clock errors. However, this error is really small and is therefore

not considered. A detailed error estimation can be found in [8].

As the GOOSE receiver needs a feedback for each correla-

tion measurement interruption to steer the hardware, the carrier

loop is directly performed after it. A scalar second order loop

filter (for more information see [9]) is chosen to calculate new

carrier NCO values. At the same time the pseudorange-rate

and code phase error is saved for the VDLL. The EKF system

and measurement model are defined as described before. The

coefficients of the PSD matrix S are determined empirically

for the test setup. They heavily depend on the chosen scenario.

Therefore P is often modelled with respect to the velocity.

The measurement noise covariance matrix is modelled with

the C/N0 measurements and optimised for the dynamics of

the chosen scenario.

Before the VDLL runs, independent scalar code and carrier

tracking loops are running. Therefore two second order loop

filters are implemented. The carrier loop continues as before

when the code loop is switched to VDLL mode. As all

information is available – a valid PVT, ephemeris data and

measurements – the tracking switch to the VDLL. Directly

tot t1

channel 1

channel 2

channel 3

reception times for each channel

tot t2

epoch k
measured

epoch k + 1
estimated

time

Fig. 3. Measurements in one burst for each channel.

after the update, the new estimated states are used to generate

new code NCO values to steer the hardware.

IV. RESULTS

The VDLL was implemented on the GOOSE receiver

and tested with a simulated scenario using a Spirent Signal

Generator. For the constant velocity system model, a scenario

with one constant moving vehicle is simulated. The starting

point is located at latitude 49◦ 29.800’, longitude 11◦ 8.495’

and height 391 m. A heading of 127◦ and constant velocity 10

m/s is set. To compare the navigation solution, the logging files

from Spirent are used. The skyplot shown in Fig. 4 containing

seven GPS satellites with a geometric dilution of precision

(GDOP) around 2.93. The scenario runs for 10 min. During

the first 30 s, standard tracking loops are running, providing an

initial navigation solution to initialise the VDLL. The position

error of the estimated states are shown in Fig. 5, the velocity

error in Fig. 6 and the clock bias and drift in Fig. 7. The

initial value of the clock drift gets really fast adjusted by the

EKF to a stable one, therefore the picture was enlarged to

the interesting area. Fig. 8 shows the calculated code doppler

errors calculated with 10 for each signal, which are send back

to steer the hardware code NCOs for a stable reference.

Fig. 4. Skyplot of the scenario.

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on February 05,2021 at 09:13:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Position error in ECEF frame along x-, y- and z-axes.

Fig. 6. Velocity error in ECEF frame along x-, y- and z-axes.

Fig. 7. Clock bias and drift estimates of EKF.

Fig. 8. Code doppler corrections to steer the hardware.

For further testing, the Spirent scenario was adjusted by

simulating a satellite which gets shadowed for a short time.

The same scenario settings as before are used, except for

satellite 17. After 165 s satellite 17 is turned off for 10 s.

With standard tracking loops, this channel would be stopped.

Fig. 9 shows the position error and Fig. 10 the velocity error,

regarding the Spirent logs. After 117 s into run, one can see

that the tracking of satellite 17 is not impacted significantly.

This is due to the measurement noise covariance matrix R
limiting the influence of this channel on the others. For

the simulated shadowing duration of 10 s, the values are

sufficiently good enough to compensate the signal outage and

calculate the code correction for satellite 17. This can be seen

in Fig. 12.

Fig. 9. Position error in ECEF frame along x-, y- and z-axes.

Fig. 10. Velocity error in ECEF frame along x-, y- and z-axes.

V. CONCLUSION AND FUTURE WORK

The paper introduces the principle architecture of a VDLL

implemented on the GOOSE receiver and the underlying

algorithm of the EKF. The implementation of the VDLL on the

GOOSE receiver shows good results improving the tracking

of GPS L1 C/A signals. The EKF provides a stable navigation

solution for a constant velocity scenario. Adaptations for the

carrier loops during the signal blocking had to be implemented

but showing stable tracking for at least 10 s. Future work

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on February 05,2021 at 09:13:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 11. Clock bias and drift estimates of EKF.

Fig. 12. Code doppler corrections to steer the hardware.

includes improving the adaptation of the carrier loop during

the signal blocking. For this paper, the testing scenarios

where chosen to have a constant satellite constellation. For

future scenarios, a dynamic constellation with rising up and

setting down satellites have to be considered in the VDLL

by dynamically updating the list of actively tracked satellites.

This has to be done without interrupting the VDLL. And last

more error sources as ionospheric, tropospheric and satellite

clock errors will bring the model even closer to real-world

conditions.

VI. ACKNOWLEDGEMENT

The work for this paper has been conducted under the

PRoPART project, which has received funding from the Euro-

pean GNSS Agency under the European Unions Horizon 2020

research and innovation programme under grant agreement No

776307.

REFERENCES

[1] E. D. Kaplan and C. J. Hegarty, “Understanding GPS: Princiles and
Applications, 2nd Ed.,” Artech House, 2006.

[2] P. D. Groves, “Principles of GNSS Inertial and Multisensor Integation
navigation systems, 2nd Ed.” Artech House, 2013.

[3] Y. Yang, J. Zhou and O. Loffeld, “GPS Receiver Tracking Loop Design
based on a Kalman Filtering Approach,” Proceedings ELMAR-2012, pp.
121-124, 2012.

[4] S. Zhao and D. Akos, “An Open Source GPS/GNSS Vector Tracking
Loop - Implementation, Filter tuning and Results,” Proceedings of the
2011 International Technical Meeting of The Institute of Navigation,
San Diego, CA, January 2011, pp. 1293-1305.

[5] F. Garzia, C. Strobel, M. Overbeck, N. Kumari, S. Joshi, F. Förster and
W. Felber, “A Multi-Frequency Multi-Constellation GNSS Development
Platform with an Open Interface,” in: IEEE Xplore 2016, DOI 978-1-
4799-8915-7.

[6] M. Overbeck, F. Garzia, A. Popugaev, O. Kurz, F. Förster, W. Felber, A.
Ayaz, S. Ko, and B. Eissfeller, “GOOSE GNSS Receiver with an Open
Software Interface,” Proceedings of the 28th International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS+ 2015), Tampa, Florida, September 2015, pp. 3662-3670.

[7] M. Overbeck, F. Garzia, C. Strobel, C. Nickel, M. Saad, D. Meister and
W. Felber, “GNSS-Receiver with Open Interface for Deeply Coupling
and Vector Tracking,” Proceedings of the 29th International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS+ 2016), Portland, Oegon, September 2016, pp. 1222-1229.

[8] M. Lashley, D. Bevly and M. Perovello, “Vector Delay Lock Loops,” in
Inside GNSS, September 2012.

[9] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen,
“A Software-Defined GPS and Galileo Receiver: A Single-frequency
Approach,” Birkhäuser.

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on February 05,2021 at 09:13:58 UTC from IEEE Xplore. Restrictions apply.

