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Abstract—This paper presents the overall architecture, first
test structure implementations, and measurement results of an
integrated GNSS front-end based on intentional path overlay. The
front-end ASIC supports simultaneous multiband, multi-system
GNSS reception of GPS L5 / Galileo E5 / GLONASS G3 and
GPS L1 / Galileo E1 / GLONASS G1 signals with up to 52 MHz
bandwidth while using only one common baseband path thanks
to an intentional analog signal overlay. Test structures of the
RF and baseband parts were realized in a 1.8 V, 150 nm RF-
CMOS technology packaged in a QFN48 housings with full ESD
protection. Both chips are described in detail regarding their
design and their actual measurement results.

Index Terms—Satellite navigation systems, Global Positioning
System, Receivers, CMOS integrated circuits, GNSS front-end

I. INTRODUCTION

Global navigation satellite system (GNSS) receivers greatly
benefit from the modernization of existing GNSS constel-
lations such as GPS and GLONASS as well as from the
launch of new ones such as Galileo and COMPASS. First, the
combining of these constellations can significantly improve
the navigation solution availability in urban canyons and
heavily shadowed areas. Second, increased satellite availability
translates into higher measurement redundancy and improved
reliability. Additionally, the excellent inherent noise and multi-
path mitigation capacity of the new and modernized wideband
signals notably improves accuracy in both measurement and
position domains.

Single-frequency users can receive GNSS signals and ser-
vices but there are several advantages to multi-frequency
processing: The frequency diversity offers superior protection
against jamming and interference since, if one frequency band
is corrupted, the receiver is still able to provide a navigation
solution relying on another frequency band. Moreover a faster
reception of the navigation messages is often possible since
the same information is transmitted on several bands (e.g.
the Galileo I/NAV message broadcast on both E1B and E5B)
using page swapping [1]. Finally, multi-frequency can be used
to form ionosphere-free pseudorange measurements that can
remove the first-order ionospheric bias and therefore provide
a higher positioning accuracy.

The challenges of multiband reception are a much higher
required bandwidth, higher sampling rates, often several re-
ception chains, a higher digital bandwidth (the raw sample
rate from the front-end output to the baseband signal process-
ing) and more self-generated interferences (e.g. when several

frequency synthesizers for different local oscillator frequen-
cies are needed). This all leads to a noticeable increase in
receiver complexity, size, and power consumption, especially
for integrated radio frequency (RF) front-ends.

Traditional GNSS front-ends but also current mass-market
GNSS receivers typically feature a low intermediate frequency
(low-IF) architecture with an RF-bandwidth of approx. 2 to
4 MHz and a low-resolution analog-to-digital converter (ADC)
of 1 to 3 bit [2], [3]. This is sufficient for the legacy GPS
L1 C/A or the narrowband Galileo E1 BOC(1,1) signals but
not for most of the new GNSS signals, especially if their
full potential in terms of accuracy and multipath resistance is
to be reached. For these, considerably larger bandwidths are
necessary (e.g. at least 16 MHz for the GPS/Galileo L1/E1
MBOC(6,1,1/11), 20 MHz for L5/E5A BPSK(10) signals,
and up to 52 MHz for processing the complete Galileo E5
AltBOC(15,10) signal) which leads to higher sampling rate
requirements.

The straightforward approach is to widen the bandwidth
and to use higher sampling rates for each desired GNSS
signal while keeping the original low-IF architecture. These
solutions can already be found as integrated circuits and can
easily be tuned to the required GNSS signal band [4], [5], [6].
However real multiband reception is only possible by adding a
complete extra receiver for each additional frequency band to
be received, either as a separate chip as proposed in [4] or by
integrating more or less several standalone receivers on one die
as proposed in [6] and [7]. This makes their implementation
straight forward but is inefficient especially for an integrated
circuit implementation.

For a wideband BOC signal such as the Galileo E5
AltBOC(15,10) a zero-IF architecture can be very advanta-
geous since the inherent zero-IF problems, namely DC-offset
and flicker noise, are not so relevant to the DC-free BOC
signals. Moreover, quasi zero-IF architectures can be used
to enable simultaneous reception of the L1/E1 GPS/Galileo
signals and the GLONASS G1 frequency division multiple
access (FDMA) signals by placing the local oscillator between
both signal bands [8].

All the architectures mentioned so far are generic in a
way that none exploit any properties of the GNSS signals
code division multiple access (CDMA) structure: the useful
signals are below the thermal noise floor, spread with long
pseudo-random noise (PRN) sequences, and have different
bandwidths. The complexity of a multiband RF front-end
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Fig. 1. GNSS signals of the future

can be considerably reduced by sharing front-end components
or stages using intentional signal overlay while exploiting
the aforementioned properties of the GNSS signals [9]. The
proposed overlay front-end architecture exploits the properties
of the direct sequence spread spectrum GNSS signals by
intentionally overlaying two signal reception paths. Thanks
to the overlay, only one common baseband path is needed.
This allows significant savings in terms of cost, size, power
consumption, and digital bandwidth. The possibility to receive
wideband signals with up over 52 MHz bandwidth enables to
fully benefit from the inherent noise and multipath resistance
of the new Galileo AltBOC and GPS/Galileo MBOC signals.
To the authors knowledge there are no publications of inte-
grated GNSS front-end receiver chip measurements capable
of processing the complete AltBOC signal.

The paper is organized as follows: First the selection of
appropriate frequency bands for this receiver type is explained.
Then the overlay architecture with its frequency plan and
some implementation details is described. In the fourth section
the used semiconductor technology of the ASIC is briefly
introduced before the architecture and measurement results of
both the RF and the baseband part are discussed in detail.
Finally, conclusions are drawn and the performance of this
overlay front-end is compared with that of current state-of-
the-art integrated multi-GNSS front-end implementations.

II. GNSS SIGNALS AND STATUS

Currently, two fully operational GNSS are available: the
American NAVSTAR-GPS and the Russian GLONASS sys-
tem. Both systems are continuously evolving to improve the
signals and services they will provide in the coming years.
Aside, two other GNSS are being developed - the European

Galileo and the Chinese COMPASS systems. Therefore, in a
few years, at least four independent but interoperable GNSS
will be available to support an increasing range of applications.

Figure 1 shows the L-band spectrum of the current and
planned GNSS signals with the notation of their modulation
names and carrier frequencies. The red and green signals are
classified, the blue ones are open signals. All current and
upcoming GNSS signals are within the protected Radio Navi-
gation Satellite Services (RNSS) band but only the L1/E1/G1
and L5/E5/G5/G3 bands are within the even better protected
spectrum allocated to Aeronautical Radio Navigation Services
(ARNS). The other three GNSS bands (i.e. E6, G2, and L2)
therefore suffer from radar, military transmissions and other
potentially strong interferers.

The combination of both E5 (including the GPS L5,
GLONASS L5OC and L3OC, Galileo E5a and E5b) and E1
(featuring the GPS L1 C/A and L1C, GLONASS L1OC, and
Galileo E1-B/C) signals is deemed the most appropriate for the
advanced open-service, multi-constellation, multi-frequency
GNSS receiver that is intended to be realized with this
integrated GNSS overlay front-end. For fast acquisition the rel-
atively narrowband L1/E1 signals (GPS C/A and Galileo E1-
B/C with BPSK(1) and BOC(1,1) modulation, respectively)
are typically used. The estimated Doppler and code delay can
then be used for high performance tracking with the wideband
L1/E1 MBOC(6,1,1/11), L5/E5a BPSK(10), L5OC BOC(4,4)
or E5b/L3OC BPSK(10) signals [10].

III. OVERLAY FRONT-END ARCHITECTURE

The front-end architecture consists of a zero-IF down-
conversion path for the L5/E5/G3 bands and a double hetero-
dyne low-IF path for L1/E1/G1 bands as shown in Figure 2.
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Fig. 2. Proposed overlay GNSS front-end architecture

The incoming L5/E5/G3 band is amplified and directly shifted
to baseband by a quadrature down-conversion mixer with a
local oscillator (LO) frequency of 1192 MHz and amplified
again by an IF gain block.

A double heterodyne architecture is selected for the
L1/E1/G1 reception path to circumvent the image problem of
a pure low-IF architecture and to reuse the LO frequencies
as it will be explained in the following paragraph. In the first
mixing stage the RF signal is down-converted to an IF of
approx. 400 MHz using a real mixer. The image frequency
is more than 750 MHz away from the RF and can therefore
be easily attenuated by an RF bandpass filter preceding the
front-end input. An IF gain block both amplifies the IF signals
and provides sufficient isolation to the next mixing stage. The
second mixing stage consists of a complex mixer which shifts
the IF signals to a low-IF frequency, as shown in Figure 3.

Thanks to a judicious frequency plan all LO frequencies
can be directly derived with integer-N dividers from a single
voltage controlled oscillator (VCO), as shown in the frequency
synthesizer block diagram in Figure 2. This architecture reuses
the E5-LO frequency for the first E1 mixing stage. The second
E1 mixing stage uses exactly one third of the first E5-LO

frequency. By using an off-chip reference oscillator of e.g.
74.5 MHz the frequency synthesizer can be realized with a
straight forward integer-N PLL type implementation.

The combiner overlays both (complex) IF-signals from the
E5/L5/G3 path and the E1/L1/G1 path in the analog domain.
This is possible since all GNSS signals are direct sequence
spread spectrum based signals with a high spreading gain and
a negative signal-to-noise ratio (SNR) before the correlation.
Preceding the overlay, the signals can be relatively amplified
or attenuated using a variable gain amplifier (VGA) combiner
controllable by the digital signal processing - in most cases the
GNSS baseband receiver. Thanks to this combiner only one
common baseband stage, consisting of an anti-aliasing lowpass
filter, an automatic gain control loop (AGC), and analog-to-
digital-converters (ADC) is needed.

The downside of the intentional signal overlay is that the
noise from the overlayed signal bands is folded into the
baseband range and directly affects the signals C/N0. Using an
appropriate power control before the overlay, the overlay noise
can be controlled and at least partly mitigated as explained in
[11]. Moreover, due to the overlay, jammers present in one
frequency band also impact the other, previously undisturbed,
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frequency band. But the advantage of being able to receive all
the open-service GNSS signals together with just one ADC
is obvious and makes the overlay architecture interesting for
advanced mass-market multiband, multi-system receivers.

IV. SYSTEM AND IC DESIGN

For the integrated circuit implementation the new LF150
process from the German foundry LFoundry was used. LF150
features a 0.15 µm RF-CMOS process with up to 6 metal layers
including a thick metal e.g. for high Q inductors and optimized
RF library devices. The complete chip was implemented in this
process using an 1.8 V operation supply.

To test and verify the different parts of this front-end
architecture, its first implementation was split into three test
structures described in the following sections: A low noise
amplifier (LNA) and mixer ”pipe-cleaner”, an analog RF re-
ceiver part, and a mixed signal baseband part. These blocks are
shown in Figure 2. The pipe-cleaner die was directly bonded
on a printed circuit board (PCB) without any packaging while
the other two test structure chips were packaged in a QFN48

housing including full ESD protection and measured on a
dedicated PCB separately.

V. RF PART

It is assumed that an active antenna precedes the front-end
chip. According to Friis’ Formula, the active antenna LNA
considerably lowers the noise figure (NF) requirements for the
on-chip LNAs. The analog RF receiver test structure uses two
fully differential LNAs for the upper and lower band amplifica-
tion, followed by complex Gilbert mixing stages, intermediate
amplifiers, and test-buffers to make off-chip measurements
possible.

A. LNA, Mixer, and IF-Amplifier Architectures

For both the E1 and E5 band LNA a modified version of
the fully differential topology described in [12] and [13] is
used to significantly suppress on-chip interferences coming
e.g. from the mixed signal baseband part on coupling over the
substrate. The LNAs were not designed to achieve the lowest
power consumption or NF but mainly for functionality. The
LNAs consist of two stacked stages as shown in Figure 5. The

53



E5 LNA

E1 LNA

M
ixer I

M
ixer Q

AM
P

AM
P

Buf
Buf

1150 µm

19
00

 µ
m

Fig. 4. Chip photo of the RF receiver test structure

input stage is a cascode topology with transistors M1 to M4. A
cascode topology is advantageous since it inherently provides
a high reverse isolation [14] which is particularly important in
the E5 zero-IF architecture, where the LO signal of the mixer
matches the LNA’s input frequency. For better input impedance
matching an inductive source degeneration is used. Looking
into the gates of the transistors M1 and M2 the inductors L1

and L2 contributes to the real part of the impedance. Instead
of using two separate inductors a common tapped one is used,
see the chip photo in Figure 4. With the series connection of
the capacitor C1 and C2, and the real parts of the impedance
seen through the gates of M1 and M2, respectively a highpass
RC-filter is formed. The inductors L3 and L4 are used to tune
the output of the first stage. The capacitor C5 together with
L3 and L4 sets the resonance frequency to the signals carrier
frequencies. The differential amplifier between Vb and R1 and
R2 adaptively controls the bias points and effectively mitigates
process, temperature, and supply variations. A common-source
output stage of the LNA is formed by the transistors M5 and
M6.

Both the first and the second mixers are realized in a
standard Gilbert-Cell topology. Gilbert-Cells are a fully dif-
ferential, double balanced topology providing a very high LO
to IF isolation [14]. Being fully differential fits perfectly to the
differential LNA output. The high isolation is very beneficial
for the intended E5 zero-IF architecture.

The IF-amplifiers are standard source coupled differential
pairs with a resistive load designed for a gain-bandwidth
product (GWB) of approx. 10 GHz. A coarse lowpass filtering
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Fig. 5. LNA circuit diagram, modified version of [12], [13], some biasing
details omitted

at the output is realized with first order RC-filters.

B. RF Part Measurement Results

These analog RF components are most critical and at the
same time crucial for the whole receiver functionality. To
check the behavior of the design kit’s RF-models a first
”pipe-cleaner” run was done with test-structures of the LNAs
and mixers already including full ESD protection. For the
measurements the originated chip-die was directly bonded on
a PCB without any packaging.

In order to measure the differential LNA input with a
standard single-ended network analyzer, an RF-balun was used
to convert between the single-ended and differential signal
domains. Moreover the LNAs were matched using a lumped
component LC-network before the balun. The measurement
results of the input reflection coefficient S11 are shown in
Figure 6 for both the lower band E5 and upper band E1 LNA
with plots of the theoretical, normalized power spectral density
(PSD) of the GNSS signals to be received. It can be seen
that the 3 dB matched frequency bandwidth is greater than
200 MHz for both LNAs, enabling the reception of all the
lower and upper GNSS L-band signals.

The impedances on the chip components are generally not
designed for 50Ω interfaces. The on-chip structures are so
small in relation to the lower GHz frequencies in the L-
band that any transmission line effects can be neglected.
Therefore the on-chip LNAs outputs are not intended to
drive a 50Ω load, e.g. given by the standard measurement
equipment. These LNAs only need to drive the much higher
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impedance of the following active mixer stage. To enable off-
chip measurements, a NMOS buffer with a transconductance
of 20 mS was designed at the output of the mixer leading
to 0 dB gain when a load impedance of 50Ω is applied.
Designing such a buffer for the mixer output is facilitated by
the fact that the mixer output frequencies are within the IF
range and no longer are at RF.

Therefore, the gain of the LNA can only be measured
indirectly. First the gain of the active mixer was determined
to be 9.5 dB for both the E1 and E5 mixers using the NMOS-
buffer as previously explained. The active mixer LO input
was an external rectangle signal with a differential peak-to-
peak amplitude of 700 mV. Then the complete chain includ-
ing the LNA and mixer was measured. The implementation
losses of the balun and cables were deembedded. With the
previously determined mixer gain, the LNA gain alone could
be calculated. The results of the pipe-cleaner measurements
of the LNA and mixer are shown in Table I and fit to the
simulated values. The current consumption is around 3 mA
for the E5 LNA, and around 2 mA for the E1 LNA, which is
also consistent with the simulations.

The 1 dB input compression point of the combined LNA
with mixer measurement was determined to be −30 dBm for
both E1 and E5. In comparison to the linearity of off-the-
shelf LNAs this may seem very low, but keeping in mind that
in an undisturbed environment only thermal noise within the
bandwidth of interest is received (approx. −100 dBm) and that
the front-end incorporates a 3 bit ADC which provides approx.
18 dB of dynamic, even a −30 dBm input compression point
is sufficient.

Having validated the pipe-cleaner designs, the complete RF
receiver including the intermediate frequency amplifier was
manufactured and packaged in the intended QFN48 housing. A
photo of the chip is shown in Figure 4. Still the aforementioned
buffers are included in parallel to each component’s output for
this test structure to allow separate component measurements.

TABLE I
MEASUREMENT AND SIMULATION RESULTS OF THE RF RECEIVER

COMPONENTS

E5 LNA1 E1 LNA1 Mixer1 IF AMP2

Gain sim. [dB] 20.0 15.0 10.0 15.0
Gain meas. [dB] 19.0 12.0 9.5 16.0

NF sim. [dB] <4 <4 13.75 13.04
Pin1dB meas. [dBm] -30 -30 -5

Current sim. [mA] 2.5 1.5 3.2 5.3
Current meas. [mA] 3.1 2.0 3.1

1 Measurement results from pipe-cleaner test structure
2 Measurement results from RF part test structure

TABLE II
SIMULATION RESULTS OF THE BASEBAND COMPONENTS

Combiner LP Filter AGC/VGA ADC
Gain [dB] −10 to 15 0 −12 to 40 -

Current (typ.) [mA] 12.4 27.1 19.7 7.0

The measurements of the RF receiver test structure con-
firmed its functionality but its gain was approx. 10 dB lower
than expected based on the pipe-cleaner measurements. The
IF-amplifier was approved as predicted by the simulations. Af-
ter some separate component measurements it was concluded
that the low gain was caused by both the E1 and E5 LNAs.
Unfortunately, the reason for this cannot be exactly determined
since the German LFoundry subsidiary went out of business
shortly after delivering the chips. However, it can be assumed
that this probably was a coincidence, e.g. some chances in
the process parameters which were not sufficiently represented
in the last version of the design kit. This theory seems to
be confirmed by the fact that a variable controlled oscillator
(VCO) which had previously been successfully measured was
no longer oscillating at the right frequency in the frequency
synthesizer test structure.

VI. BASEBAND PART

The mixed signal baseband part consists of a combiner with
adjustable combination ratios, adjustable anti-aliasing lowpass
filters, an AGC with over 50 dB dynamic range and a 3 bit,
74.5 MHz dual-ADC with integrated pulse blanking capability.
The baseband blocks are shown in Figure 2.

By using an integrated serial peripheral interface (SPI) con-
troller, the SNR degradation resulting from the combination
of both signal paths can be minimized by setting the relative
combiner gain to an appropriate value. This method was
described in [11]. Moreover the SPI controller can be used
to enable different power down features.

Figure 7 shows a chip photo of the baseband part. The
core layout was already structured for an optimized complete
integrated front-end chip. The baseband part size is smaller
than 0.91 mm2. For this test structure only, the spaces were
filled with on-chip blocking capacitors. All the components
are powered by 1.8 V. The power consumption is summarized
in Table II.

A. Baseband Component Description

1) Digital Core: A digital core featuring an SPI was im-
plemented within the baseband part. It can control, configure,
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and turn off various blocks and components of the chip. Its
functionality is summarized in Table III. The digital core not
only allows an effective debugging and testing of the chip, it
also gives to the GNSS receiver the possibility to modify or
control the front-end hardware according to its environment
e.g. switching off one path if a severe interferer is detected or
controlling the combiner gain values to minimize the overlay
loss as described in [11].

2) Combiner: As shown in the combiner block diagram in
Figure 2, before the E1 and E5 signal paths are overlayed they
can be amplified or attenuated by the combiner VGA cell. This
block can be controlled in 64-steps (6 bit) via the SPI-bus of
the digital core. Each signal path has a tunable 25 dB dynamic
range from −10 to 15 dB, see Figure 8. In order to improve
the area implementation of the cell, the steps show a non-
linear characteristic depicted as differential gain in Figure 8.
Since the combiner VGAs should be regulated by an adaptive
control algorithm running on the baseband GNSS receiver, this
non-linearity is irrelevant.

According to the frequency down-conversion scheme de-
picted in Figure 3 the E1 signal overlays the E5a/L5 main
lobe. If the RF-filter exclusively selects the E1 frequency band,
only the left main-lobe of E5 (in essence the Galileo E5a and
GPS L5 signals) is affected by the overlay while the right

TABLE III
DIGITAL CORE FUNCTIONALITY

Logical Block Component Method
LNA E1 Power Down

E5 Power Down
Mixer E5 I and/or Q Power Down

First E1 I and/or Q Power Down
Second E1 I and/or Q Power Down

IF-amplifier E5 I and/or Q Power Down
E1 I and/or Q Power Down

Combiner I/Q Change Mirror E1 Spectrum
VGA E1 6 bit −10 to 15 dB
VGA E5 6 bit −10 to 15 dB
Adder I and/or Q Power Down

AGC Low-pass Filter Power Down
ADC VGA I and/or Q Power Down
Internal AGC Loop Power Down
Control Method CW or GNSS-noise
Pulse Blanking on / off
Overload Control on / off

ADC I and/or Q Path Power Down
ADC Buffer Power Down
Resolution 3 or 2 bit
Output Format
Output Driver Strength
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Fig. 8. Simulation of the combiner block digital programmable gain for both
E1 and E5 paths

main-lobe comprising Galileo E5b remains untouched. This
can also be inverted by changing either the polarity of one
E1 signal I/Q component (swapping + and - signals in the
in-phase and quadrature branch) or its phase (swapping the
in-phase and quadrature branch) before the combiner stage.
Doing so leads to a mirroring of the E1 signal around the
zero frequency axis. Depending on the intended application,
this method can be beneficial since the overlay loss can be
completely switched off on either E5a or E5b assuming an
adequate E1 signal RF bandpass filter.

3) Anti-Aliasing Lowpass Filter: A 4th order active lowpass
filter was realized in a Chebyshev topology using two op-
amps and RC-networks. The default 3 dB cutoff frequency
is around 33 MHz. Since the bandwidth setting integrated
RC values vary by ±20% due to CMOS process variations
a self-calibration was realized with an external reference
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Fig. 9. Simulation results of the low-pass filter bandwidth together with the
combiner in dependency of an external reference resistor

resistor. This external resistor can also be used to adjust the
filter bandwidth between 3 to 35 MHz. Figure 9 shows the
simulation result of the filter bandwidth in dependency of the
external reference resistor value swept from 40 to 120 kΩ.

4) Automatic Gain Control: The automatic gain control
ensures that the ADC’s input signals are within the optimal
range. The AGC senses the distribution of the ADC bits and
sets the ADC VGA gain appropriately. The control algorithms
can be configured to achieve better performance in presence of
CW signals or for a minimum C/N0 loss when GNSS-noise
like signals are applied. The dynamic range of the VGAs is
−12 to 40 dB according to the simulations.

5) Pulse Blanking: The baseband chip is equipped with an
energy detector setting a blanking flag output signal if ADC
clipping is occurring. Moreover, the ADCs can be configured
to blank the signal if the blanking flag is active. This feature
enables pulse blanking mitigation at a very early stage making
it very effective. Finally, the AGC can be protected from being
stimulated from pulses using the overload control switch.

6) ADC: The analog-to-digital-converters (ADC) digitize
the output differential signals of the variable gain amplifiers.
Typical GNSS receivers use low bit quantization. The im-
plemented converters employ 3 bit which is a good trade-
off between complexity and low implementation loss. Due
to the low number of bits requirement, the classical flash
topology was selected. The cell includes a buffer, a resistor
ladder, comparators and a digital core cell for decoding. The
components are optimized in terms of current consumption and
speed. The comparators include an amplification stage and a
decision stage. The amplification stage reduces the coupling
to the input signal of the noise generated at the decision stage.
The decision stage consumes current only at the rising edge
of the clock signal. The current consumption of the different
stages is minimized in order to preserve the ADCs linearity.
The resistor ladders of the ADCs are placed together in the
layout in order to reduce the mismatch.

Fig. 10. Photo of the baseband part test PCB

B. Baseband Measurement Results

The baseband functionality was measured and verified with
the test board shown in Figure 10. The PCB provides two com-
plex input signals (E5 I/Q, E1 I/Q) which are converted from
single-ended to differential with an external balun including a
bias point. Moreover some output buffers for the clock input,
the digital ADC outputs, and SPI interface are employed as
an interface for the measurement equipment.

It has to be noted that due to the baseband part test
structure implementation, it is not possible to test single blocks
separately. Therefore, all reported test results were measured at
the dual-ADC outputs using input signals at the combiner. The
measurement results include all effects from all the baseband
part components (from combiner to ADCs).

1) Combiner: To test the combiner with its E1 and E5
VGAs, two complex GNSS baseband signals - one 16 MHz
bandlimited E1 MBOC and one E5 AltBOC signal - were
generated and fed to the baseband part inputs with a high
SNR to be able to identify their main-lobes in the plots. The
E1 signal was shifted to an IF of −13.91 MHz to be compliant
with the frequency down-conversion scheme proposed in Fig-
ure 3. Using the combiner VGAs, the E1 signal amplification
was varied from 13.5 to −5.3 dB while the E5 combiner VGA
was hold constantly on 2 dB. Figure 11 shows the overlayed
signals with different E1 combiner VGA settings. Since the
AGC automatically amplifies the overlay output signal to fit
to the optimum ADC range, the PSDs shown in Figure 11
were scaled in a way that the E5b main lobe is approximately
always at the same level. This enables a better comparison of
the combiner VGA effect. It can be concluded, that the overlay
works appropriately and that sufficient overlay control of the
path is provided by the implemented combiner VGAs.

2) E1 I/Q Change: The blue colored plot in Figure 12
shows the recorded PSD when both paths are simultaneously
activated with intentional overlay of the E1 MBOC and E5a
BPSK signals according to the frequency down-conversion
scheme proposed in Figure 3. As the blue colored plot shows,
the left main-lobe of E5a is completely affected by the overlay
while the right side remains untouched. Activating the E1 I/Q
change feature, only the E1 path is mirrored around the zero
frequency axis. The PSD with activated E1 I/Q change is
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Fig. 11. Measured overlay PSD of E1 and E5 signals in dependency of the
E1 combiner VGA settings
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Fig. 12. Measurement of E1 I/Q change activation

depicted in the same Figure in green color and shows that
the E5a main-lobe is now no longer affected by the overlay.

3) AGC and ADC VGAs: The AGC loop continuously
modifies the ADC VGAs control voltage to guarantee an
optimal ADC input power. The implemented circuitry enables
to control the VGAs (I and Q) independently or together, as
shown in Figure 2. The voltages at the I and Q VGA control
pins were measured while the input power was swept. The
AGC loop controls the VGAs in a way that the ADC input
power is kept constant. Therefore, the VGAs dynamic range
can be measured observing the range of the control voltages
to be approx. 50 dB between the signal input powers of 5 to
−45 dBm as shown in Figure 13. However, it should be noted
that for normal operation the I and Q VGA control pins are
connected together. Nevertheless Figure 13 also demonstrates
the excellent matching of the I and Q baseband paths.

Moreover, the combiner VGAs were set to their minimum
value (approx. −10 dB) and afterwards to their maximum
value (approx. 15 dB). The combiner VGAs dynamic range
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Fig. 13. Measured ADC VGAs values of the I and Q paths in dependency
of the input power
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Fig. 14. Measured dual-ADC output spectrum with 10 MHz input tone and
a sampling frequency of 80 MHz

can also be confirmed by measuring the offset between the
results with minimum and maximum combiner VGAs settings.

And finally, the AGC control method was changed from
CW-mode to the GNSS-noise mode. In CW-mode more clip-
ping of the ADCs occurs. Therefore the VGAs gain in CW
AGC mode is always approx. 5 dB higher than in the GNSS-
noise mode.

4) ADC: Figure 14 shows the measurement results of
the signal-to-noise-and-distortion-ratio (SNDR) of the whole
baseband part at nominal conditions. A 10 MHz input signal
was applied to the test-chip and sampled with 80 MHz. Using
Equation 1 for a sinusoidal input signal, the effective number
of bits (ENOB) was calculated to be 2.74 bit which is in
accordance with the simulation results.

ENOB = (SNDR − 1.76 dB)/6.02 dB (1)

Although the receiver architecture shown in Figure 2 has a
nominal dual-ADC sampling rate of 74.5 MHz, different tests
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TABLE IV
COMPARISON WITH PREVIOUSLY PUBLISHED INTEGRATED MULTIBAND GNSS FRONT-ENDS

[4] [15] [5] [7] [6] [8] this work
Process 130 nm CMOS 180 nm CMOS 65 nm CMOS 130 nm CMOS 180 nm CMOS 65 nm CMOS 150 nm CMOS

1st GNSS band L1/E1 L1/E1 L1/E1 L1/E1 L1/E1/B1, L1/E1/B1, L1/E1/G1
2nd GNSS band L5/E5aa L5/E5a b G1 L5/E5ac L5/E5a, B2/E5b B2/E5b L5/E5a, E5b/G3
3rd GNSS band - - - - L2 c,d L2 c,d E5

Bandwidth 14/20 MHz 9 MHz 2/4/8 MHz 4.53/24 MHz 2/4/20 MHz 2 to 8 MHz 52 MHz
ADC resolution 2 bit I/Q , n.a. 2x 3 bit 2 bit 4 bit I/Q 2 to 4 bit I/Q 3 bit

ADC sampl. rate 66.188 MHz 24 MHz 32.736 MHz 49.104 MHz 62 MHz n.a. 74.5 MHz
Size 2.89 mm2 a 16.0 mm2 4.65 mm2 11.4 mm2 7.2 mm2 10.5 mm2 6.76 mm2 e

a One chip needed for each GNSS band to be received
b Switching receiver architecture; only one band can be received at the same time
c Integration of two almost independent reception chains
d Only two GNSS bands can be received simultaneously
e Die size of complete receiver including frequency synthesizer

showed a reliable maximum ADCs sampling rate of over
150 MHz.

VII. CONCLUSION

The presented RF front-end parts enable the simultaneous
reception of GPS L5 / Galileo E5 / GLONASS G3 and GPS L1
/ Galileo E1 / GLONASS G1 signals with broad bandwidth. By
using the proposed frequency plan and sharing the baseband
parts with an overlay concept, the underlying architecture
enables an efficient implementation in terms of digital data
rate, chip size, and power consumption.

In comparison to other recently published integrated multi-
GNSS front-end implementations (see Table IV) the reception
bandwidth has been significantly increased. The presented
implementation supports the first time the reception of the
complete 52 MHz bandwidth Galileo E5 AltBOC(15,10) signal
in an integrated front-end enabling to fully benefit from the
inherent noise and multipath resistance of this sophisticated
modulation scheme.

For future work, the presented RF and baseband parts will
be revised and combined with the frequency synthesizer to
form a fully integrated multi-GNSS front-end ready to coher-
ently and simultaneously receive most open GNSS signals.
The currently foreseen layout of the complete receiver chip
including the frequency synthesizer has a die size of 6.76 mm2.
The already small implementation size shows the potential
of this overlay architecture as compared to other recently
published integrated multi-GNSS front-end architectures.
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