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ABSTRACT

GNSS signals are extremely susceptible to all types of in-
terference. Therefore the GNSS bands should be constantly
monitored to detect possible threats. Since the GNSS bands
are up to 100 MHz wide, receivers sampling at a Nyquist
rate (i.e. at least twice the bandwidth) have very strin-
gent requirements in terms of data rates and data storage.
In this paper, a compressed sensing random demodulator
analog-to-information converter (AIC) architecture for in-
terference detection is proposed. In this approach, only
a sub-Nyquist sampling rate is required which greatly re-
duces the ADC requirements and the size of the raw data
output file. For interference detection and recovery the AIC
output is tested against several given interference models
(assumed as a priori knowledge) using specific reconstruc-
tion algorithms. If successful, the original interference sig-
nal can be recovered. The structure of the AIC, the sig-
nal recovery, and the modeling of the interference source
are described in detail. Moreover the performance of this
method is assessed for three types of interference (CW,
chirp, and pulse). Specifically, the interference detection
probability is evaluated as a function of the interferences’
signal-to-noise ratio (SNR) and of the downsampling factor
used in the AIC.

INTRODUCTION

GNSS Bands and Interference

Figure 1 shows the L-band spectrum of the current and
planned GPS and Galileo global navigation satellite sys-
tem (GNSS) signals with the notation of their modulation
names and carrier frequencies. The red signals are clas-
sified (e.g. signals for military purpose only), the blue
ones are open signals. All current and upcoming signals
are within the protected Radio Navigation Satellite Ser-
vices (RNSS) band but only the L1/E1 and L5/E5 bands
are within the even better protected spectrum allocated to
Aeronautical Radio Navigation Services (ARNS). The other
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Figure 1. GPS and Galileo signals and their bands

two GNSS bands, E6 and L2, only protected through the
RNSS, suffer from radar, military transmissions, and other
potentially strong interferences.

Due to the inherently low power of GNSS signals (approx.
-127 dBm received signal power on earth), the GNSS bands
are dominated by white Gaussian noise. The noise is about
hundred to a few thousand times stronger than the GNSS
signal itself. As a consequence, the GNSS signals are ex-
tremely susceptible to all types of interference. The inter-
ferences can be unintentional like the harmonics of certain
oscillators that translate into single continuous wave (CW)-
tones or multitones in the GNSS spectrum. Moreover in
the L5/E5 band, the GNSS service is sharing its bandwidth
with systems like Distance Measuring Equipment (DME)
and Tactical Air Navigation (TACAN) appearing as Gaus-
sian shaped pulse signals. In the L2/E6 band strong mili-
tary radar signals can appear. But, there are also more and
more intentional interferences - so called jammers - read-
ily available on the market, mostly sold over the internet,
even if their use is illegal in most countries. The commer-
cial jammers can often be characterized by a chirp signal.
All these interferences have in common that a very small
output power is sufficient to exceed the thermal noise floor
and therefore to effectively affect the GNSS signals.

Since effective interference mitigation techniques - like ar-
ray processing, or frequency domain adaptive filtering -
are mostly unavailable to mass-market GNSS receivers and
still relatively uncommon in professional receivers, it is
necessary to monitor the GNSS bands of interest for later
interference detection and elimination.

State of The Art

Different kinds of GNSS bands monitoring networks were
installed, are currently under development or planned: [1],
[2], [3]. [4]. To monitor a GNSS band, basically the com-

plete broadcast bandwidth (around 50 MHz for Galileo E1,
GPS L2 and Galileo E6, 100 MHz for the complete E5
band, see Figure 1) has to be supervised.

The Nyquist-Shannon sampling theorem states that the sam-
pling rate Fs has to be at least twice the bandwidth of the
signal to be digitized in order to avoid aliasing effects. The
bandwidth of interferer signals are typically much smaller
than that of the overall frequency band but their location is
unknown. So, without exploiting any a priori knowledge
about the interferer the complete GNSS signal bandwidth
to be monitored has to be digitized.

The required Nyquist sampling rate of an analog-to-digital
converter (ADC) used to digitize a 50 or 100 MHz band-
width is therefore at least 100 or 200 mega samples per sec-
ond (MSPS), respectively. Moreover a high dynamic range
is required since the GNSS signals are around the thermal
noise floor power while the interferences can easily reach
80 dB or more. So, a 14 or even 16 bit ADC is needed.
Looking at the current state of the art, sophisticated 16 bit
ADCs with 200 MSPS are available to digitize the complete
E5 band but they are expensive and have very high power
consumption and stringent jitter requirements. They also
generate very high data rates resulting in very large files
that need to be stored for post-processing.

E.g. the data acquisition system used in [5] to character-
ize different GNSS jammers features 16-bit I/Q samples
with 62.5 MHz resulting in a raw data rate of 2 GBit/s or
250 MByte/s which is already too high for most hard drives
for constant data recording. Such a system is not only very
expensive but also produces very large amounts of raw data
making storage and post-processing very cumbersome.

Thinking about building a regional interference monitoring
network, a certain amount of stations have to be present
to capture the raw signal and transmit their measurements
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(e.g. the raw data) to a central server. This server can then
process the raw-snapshots, detect and possibly also localize
the interference source [6]. The high raw-snapshot sizes
of current Nyquist sampling data acquisition systems make
the data transfer and storage very demanding since e.g. no
mobile network connection can be used.

New Approach

In this paper a much more efficient approach is presented to
detect all kinds of known interference sources using a com-
pressed sensing analog-to-information converter (AIC) fea-
turing a sub-Nyquist rate sampling process. The require-
ments for this technique to work are some a priori knowl-
edge about the interference signals to be detected (e.g. CW-
tones, certain chirp or pulse signals) and the existence of
a domain where the interference signal’s representation is
sparse. Then the ADC’s sampling rate can be decreased to
approx. O(k log6W ), where k is the number of interfer-
ences and W being the bandwidth to be monitored [7]. As
an example: instead of the 200 MSPS that would normally
be required, the compressed sensing AIC technique could
detect one CW-tone or one kind of chirp interferer within
the 100 MHz E5-band, using approximately 330 kSPS (a
reduction factor of more than 600!).

The extremely low ADC sampling rate in the AIC helps
to minimize the raw-snapshot size: The signal is ”com-
pressed” since only a certain signature and not the signal
itself is stored. This enables an interference monitoring net-
work where the compressed raw-samples are shared using
an inexpensive low-rate mobile network connection. The
compressed raw-samples are then post-processed on a cen-
tral server with high computational power and a catalog of
characterized interference templates that can then be de-
tected and optionally also localized.

AIC INTERFERENCE DETECTION RECEIVER

Compressed Sensing

Compressed sensing is a data acquisition protocol which
samples at a sub-Nyquist rate and later reconstructs the
original data from an incomplete set of measurements.

Let f ∈ Cn be the signal to be recovered. Instead of f
n measurements are stored in the vector y ∈ Cn. The
sensing matrix Φ makes the connection between signal and
measurements by forming a linear system

y = Φf . (1)

For the compression only m � n out of all n measure-
ments are used. So the measurement system is

ŷ = Ry = RΦf ∈ Cm, (2)

where R is an m× n matrix that samples m out of n mea-
surements. This system is generally ill-posed because it

has no unique solution or, in other words, underdetermined
with an infinite number of solutions.

The theory of compressed sensing claims that this ill-posed
problem can be solved and the original signal f recovered
if a proper base representation matrix Ψ is chosen in which
this signal has a unique sparse representation [8], [9].

The signal f can be expanded in an orthonormal basis Ψ
where it has a sparse representation x:

f = Ψx (3)

Moreover an incoherency between the sensing matrix Φ
and the representation matrix Ψ is required. The coherence
can be measured with [8]

µ(Φ,Ψ) =
√
n · max

1≤k,j≤n
|〈φk, ψj〉| . (4)

The low coherence can be obtained e.g. by using an in-
dependent identically distributed Gaussian random sensing
matrix Φ with ±1 binary entries and any fixed representa-
tion for Ψ. The incoherency ensures that the small number
of taken samples still contains enough information for a
successful reconstruction afterwards.

Under these and some further assumptions it can be shown
that the undetermined linear system can be solved thanks
to the sparsity of the signal in the appropriately chosen rep-
resentation basis.

Possible Hardware Implementation

For the interference detection receiver described hereafter,
the sampling process is performed by an AIC hardware
converter using a random demodulator.

The basic idea behind the random demodulator is that if
a signal, which has to have a sparse representation in a
known domain, is spread with a pseudorandom noise (PN)
sequence, a distinct signature of the signal is present at all
frequencies. If then only a small portion of the spectrum
is recorded (e.g. using a low-pass filter), the amount of
information acquired is still sufficient to enable the full re-
construction of the signal.

The reconstruction algorithm then uses the information of
the hardware AIC - namely the filter response, the pseudo-
random sequence used, the compression or downsampling
ratio - and the information about the domain in which the
signal to be reconstructed has a sparse representation to re-
cover the signal.

Figure 2 shows the block diagram of a possible hardware
implementation of the AIC interference detection receiver.

An active multiband antenna is used to receive the GNSS
band to be monitored. The first low noise amplifier (LNA)
guarantees a good overall noise figure for the receiver ac-
cording to Friis’ Formula. The RF bandpass filter then at-
tenuates all unwanted out-of-band frequencies.
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Figure 2. Block diagram of the proposed AIC interference detection receiver

In the RF front-end the antenna output signal is amplified
again and down-converted using either a real mixer or a
complex I/Q demodulator to an intermediate frequency or
complex baseband signal f(t), respectively.

The random demodulator with AIC consists of a pseudo-
random sequence demodulator, an anti-aliasing low-pass
filter, an analog-to-digital converter with an appropriate au-
tomatic gain control (AGC), and a data storage device. The
AGC uses a variable gain amplifier (VGA) to ensure that
the ADC’s input signal is within the full scale range pro-
viding the maximum effective number of bits.

The pseudorandom sequence demodulator uses a prede-
fined ±1 data sequence p(t) with a sampling rate Pc be-
ing the Nyquist rate for the signal band of interest. The
length of the pseudorandom sequence is conditioned by the
number of samples n to be acquired. Moreover the pseudo-
random sequence is synchronized to the data storage device
which is required for the later reconstruction phase. Since
only multiplications with±1 are necessary, the random de-
modulator can be efficiently implemented in hardware e.g.
using simple flip-flops.

Referring to the theoretical model, the signal f is first mod-
ulated with a pseudorandom sequence p = (p1, ..., pn) and
pi ∈ {−1, 1} resulting in fspread = Df , for a pseudorandom
matrix D ∈ Rn×n

D =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 · · · · · · pn

 .

The spread output of the random demodulator is filtered
by an anti-aliasing low-pass filter whose bandwidth is set
according to the Nyquist frequency of the subsequent low-
rate ADC. It is assumed that the filter behavior can be de-
scribed with filter coefficients in h(t) having an order l.

Using the low-pass filter matrix H ∈ Rn×n

H =


h(1) 0 · · · · · · · · · 0 0
h(2) h(1) · · · · · · · · · 0 0

...
. . . . . . . . . . . . . . .

...
0 0 · · · h(l − 1) · · · h(1) 0
0 0 · · · h(l) · · · h(2) h(1)


the system can be rewritten as

y = Hfspread = HD︸︷︷︸
Φ

f = Φf . (5)

Between the pseudorandom generator’s sampling or chip-
ping rate Pc and the ADC sampling rate Fs, a compression
ratio or downsampling factor DSF can be defined. It ba-
sically provides the advantage of the whole concept since
instead of n acquired samples, only m samples have to be
stored with m� n:

DSF = Pc/Fs = n/m (6)

For a rational compression ratio, the compression matrix
R ∈ Rm×n can be described as

R =


1 · · · 0 · · · · · · · · · 0
0 · · · 0︸ ︷︷ ︸
bDSFc−1

1 0 · · · 0

...
. . . . . . . . .

...
0 · · · 0 · · · · · · · · ·

 .

After this downsampling or compression the systems pro-
vides the measurement output as

ŷ = RΦf . (7)

Signal Recovery

The goal of the signal recovery process is to reconstruct a
discretized version of the original signal f(t) with a sam-
pling rate Pc using the compressed measurements ŷ, the
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information of the random demodulator RΦ, and the a pri-
ori knowledge of the signal to be recovered, e.g. in which
base Ψ the signal f has a sparse representation coefficient
vector x. Putting all this information together the measure-
ment matrix A is introduced, see also Figure 3:

ŷ = RΦΨ︸ ︷︷ ︸
A

x = Ax. (8)

Having solved this equation for x, a discretized version of
the original signal f(t) can easily be found since f = Ψx.

The challenge of the recovery is that Equation 8 is underde-
termined and therefore has an infinite number of solutions
and cannot be solved uniquely. But with the constraint of
sparsity - that only the solution with the minimal number
of nonzero coefficients is the right one - the problem can
be solved uniquely.

Different signal recovery algorithms for this can be found
in the literature e.g. greedy pursuits, convex relaxation,
combinatorial algorithms classes [10], [11], [12], [13], [14].
Convex relaxation algorithms are very successful in reach-
ing a good solution but are computationally expensive. The
greedy pursuits algorithms are known for their speed but
there is also a group of the combinatorial algorithms that
are even faster than greedy algorithms with very strict re-
quirements on the measurement matrix [15].

Two signal recovery algorithms are used for the simulations
presented later on in this paper: CoSaMP (Compressive
Sampling Matching Pursuit) and a brute force algorithm.

The CoSaMP, as described in [14], is based on a greedy
pursuit approach that incorporates ideas from combinato-
rial algorithms to guarantee speed and to provide rigorous
error bounds. The iterative CoSaMP first identifies the lo-
cations of nonzero elements in x and then estimates its val-
ues. CoSaMP is relatively fast, can recover K-sparse solu-
tions, and preserves amplitudes.

The performance of the CoSaMP algorithm largely depends
on the restricted isometry property (RIP). For each integer
K = 1, 2, ..., the isometry constant δK of a matrix A is

defined as the smallest number for which

(1− δK)||x||2l2 ≤ ||Ax||2l2 ≤ (1 + δK)||x||2l2 (9)

holds for all K-sparse vectors x. The vector x is said to be
K-sparse if it has only K nonzero elements.

It can be loosely stated that a matrix A obeys the RIP of
order K if δK is not to close to one. In other words if
A obeys the RIP than A approximately preserves the Eu-
clidean length of K-sparse signals. RIP is equivalent to the
fact that all subsets of K columns taken from A are actu-
ally nearly orthogonal.

The CoSaMP starts with the initial approximation x = 0
in order to recover the K-sparse solution. At each step the
residual vector

r = Ax− ŷ (10)

and the correlation vector

u = A∗r = A∗(Ax− ŷ) (11)

are computed.

Thanks to the RIP, for the K-sparse signal x the vector
A∗Ax can serve as a proxy for the signal because the en-
ergy in each set of K components of the mentioned vector
approximates the energy in the corresponding K compo-
nents of x. This is the main reason behind the identifica-
tion of the 2K largest components in u, or the components
with the largest energy, whose indexes are put in the set I
(which was at the beginning an empty set). On this set a
least squares problem is solved

ŷ = AIxI (12)

where the matrix AI is the restriction of A to set I by just
taking the columns at positions defined in I . The solution
at each step is equal to xI for positions in I and elsewhere
0. The process is repeated until a certain number of steps
is done or until CoSaMP reaches a predefined tolerance on
the residual.

Another approach is the brute force recovery. It may be
used in special cases where the reconstruction phase is not
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blind. Using the a priori information the signal may be
efficiently recovered with low computational cost.

In the special case when only one interferer shall be recov-
ered (the sparsity is therefore one and only a single element
of x is one), the brute force method calculates all possible
residuals rk with k = 1, ..., n over all n combinations by

rk = ‖A(:, k)− ŷ‖2. (13)

The minimum of all rk, rmin is the most likely solution.
By using a certain threshold between the minimum rmin

and the second minimum of the residuals, it is possible to
decide if the tested interferer was present or not.

INTERFERENCE CHARACTERIZATION

Before the interference can be reconstructed or detected
from the AIC output data, the interference source must be
carefully characterized. This a priori knowledge is nec-
essary for this compressed sensing interference detection
method to work.

As depicted in Figure 3, the product of the RHD matrices
stays the same for each recovery process. The representa-
tion matrix Ψ has to be adapted for each kind of interferer.
This adaption is happening within the interference charac-
terization step described in detail in the following. To con-
clude, for each interference to be checked a measurement
matrix A (or its conjugate transpose) has to be calculated
and can then be stored e.g. in an interference template cat-
alog. In the detection and recovery process the compressed
samples then have to be checked against the different cata-
log entries to determine if one of the characterized interfer-
ences was present in the captured signal.

The easiest kind of interference is a continuous wave (CW)
tone interference which could e.g. be unintentional (a har-
monic from some local-oscillator of a different system) or
intentionally placed e.g. on the main lobes of the GNSS
signal to be jammed. Moreover, also multitones are pos-
sible. The presented interference detection method detects
both the frequency and the amplitude of the interference
signal within the observation bandwidth. The frequency
resolution fres is principally limited by the number of ac-
quired samples n and the sampling rate Fs according to
fres =

Fs
n .

Recently some research institutes have characterized dif-
ferent kinds of jammers sold over the Internet, from small
cigar-lighter type ones to very sophisticated multi-band jam-
mers [16], [5]. In summary, most of them can be modeled
as some kind of chirp generator distinguished by their pa-
rameters in terms of starting/stopping frequency and sweep
period time. Therefore for each of the jammers, one input
in the interference template catalog is necessary.

Known pulse interference coming from Distance Measur-
ing Equipment (DME) and Tactical Air Navigation (TACAN)

systems are present in the L5/E5 band. The different pulse
signals can also be modeled in their time and frequency be-
havior and filed in the interference template catalog.

The first task for a successful detection is to find a certain
representation base that exhibits the sparsity of the interfer-
ence source to be detected. In the following, the construc-
tion of representation matrices Ψ that provide the required
signal sparsity is described for each of the three types of
the interferences: CW, chirp and pulse.

Tones and Multitones

As it can be seen in Figure 4(a), CW tones are sparse in
the frequency domain. Thus, an appropriate basis function
for the signal’s sparse representation is an inverse Fourier
transform. For time invariant tones and multitones the rep-
resentation matrix is an n×n inverse discrete Fourier trans-
form (IDFT) matrix

ΨCW =
1√
n
·

1 1 · · · · · · 1

1 e−
2πi
n · · · · · · e−

2πi(n−1)
n

...
...

. . .
...

...

· · · e−
2πi(n−2)(n−2)

n e−
2πi(n−2)(n−1)

n

1 e−
2πi(n−1)

n · · · e−
2πi(n−1)(n−2)

n e−
2πi(n−1)(n−1)

n


,

where n is the number of acquired samples.

To be able to guarantee the good performance of the CoSaMP,
it would have to be proven that the measurement matrix
A = RHDΨ satisfies the RIP property. In the literature
the RIP property has been proven for special kinds of filter
matrices H [17], [7]. This property has also been proven
for the Toeplitz matrices, which is exactly the structure of
the filter matrix H used in this paper, but with a property
that the vector used in its construction is a Gaussian vec-
tor [18].

Even though the constructed matrix A used in this paper
does not belong to any of these two groups, it was con-
cluded that, from a numerical point of view, the RIP is suf-
ficiently satisfied (otherwise the reconstruction would not
be possible).

Chirp Signals

By definition, a chirp signal is a signal in which the fre-
quency increases or decreases with a certain slope over the
time. Types of a chirp signal are e.g.:

Linear chirp: frequency f(t) varies linearly with time

f(t) = f0 + kt,
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(a) Exemplary multitone signal, SNR=30 dB, f1=44MHz, f2=24MHz,
f2 with half the power of f1

(b) Exemplary chirp signal, SNR=30 dB, linear sweep, fstart=−37MHz,
fstop=+11MHz, period=50µs

Figure 4. Time, Frequency and Spectrogram representation of CW and Chip signals

where f0 is the starting frequency (at time t = 0) and k
is the rate of frequency increase or chirp rate. The time-
domain function for a sinusoidal linear chirp is the sine of
a phase in radians

x(t) = sin

[
2π

(
f0t+

k

2
t2 + φ0

)]
,

where φ0 is the initial phase.

Exponential chirp: frequency f(t) varies exponentially with
time

f(t) = f0k
t,

where f0 is the starting frequency (at time t = 0) and k
is the rate of exponential increase in frequency. The time-
domain function for a sinusoidal exponential chirp is the
sine of a phase in radians

x(t) = sin

[
2πf0

kt − 1

ln(k)
+ φ0

]
,

where φ0 is the initial phase.

Figure 4(b) shows an example of a linear chirp signal with
increasing frequency and a given repetition period in its
time and frequency domain together with its spectrogram.
The picture shows that the chirp is neither sparse in the time
domain nor in the frequency domain.

For the construction of the representation base for chirps
an a priori knowledge about a special chirp signal is used.
The basic requirement is that the chirp signal’s parameters
are stable and repeated in a periodic way. To obtain an
independence of time, so that the signal recording position
does not have to be synchronized to the period of the chirp,
exactly one period of the chirp is used for the representation
base. A circulant matrix using a vector that contains exactly

the samples of the signal is constructed. An advantage with
this approach is that the a priori knowledge of the sparsity
one can and will be used in the reconstruction phase.

A basic scheme can be seen on a small example where n
samples [v1, · · · , vn] are taken and the size of the represen-
tation matrix is n× n:

Ψchirp =



v1 vn · · · v3 v2

v2 v1
. . .

... v3
... v2

. . .
...

...

vn−1
...

. . .
... vn

vn vn−1 · · · v2 v1


.

The set in which the solution x can be found is:

S = {z|supp(z) = {k} and z|supp(z) = 1, k = 1, . . . , n}

A brute force reconstruction can be used where every possi-
bility from the possible solution set S will be tested to find
the best match. Using the a priori knowledge that with this
kind of representation matrix the sparsity level is exactly
one, the brute force reconstruction algorithm even performs
faster than CoSaMP.

Pulses

In Figure 5 one special kind of pulse is exemplary plotted in
its time and frequency domain together with a spectrogram.
It can be seen that this pulse has a sparse representation in
the time domain.

If the pulse is in the form of a unique spike then it already
has a sparse representation in the time domain and a proper
representation base would be the spike base. But often
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Figure 5. Exemplary Rectangular shaped pulse signal,
SNR=30 dB, length = 1µs

pulses are not received in that form: e.g. the DME/TACAN
pulses have a certain Gaussian shaping with a distinct repe-
tition frequency on a well defined frequency offset or chan-
nel. Then an approach similar to that previously described
for chirp signals can be used where the pulse time behav-
ior is described in the representation matrix Ψ obtaining
independence in the time domain.

BASIC REQUIREMENTS

Based on the analysis made in the previous section some
requirements for a reliable reconstruction have to be made:
The signal to be detected has to be periodic and the number
of acquired samples n must be large enough to include the
period of the interference signal. Moreover n depends on
the bandwidth to be observed: The higher the bandwidth,
the larger the reconstruction matrices for a given time in-
terval are.

Therefore n basically sets the matrix size within the recon-
struction process and directly influences the computational
complexity.

A trade-off has to be made between the computational power
and the snapshot size of the monitored bandwidth. The
CoSaMP is reported to have a complexity of O(n log2 n)
[14]. Moreover it is important to find a proper input setting
of the algorithm in accordance to the targeted application.

The other mentioned brute force reconstruction algorithm
has a linear complexity of O(n) and performs therefore
much faster but can only recover a sparsity of one.

SIMULATION RESULTS

To investigate the impact of the signal-to-noise ratio (SNR)
- where signal actually refers to the interference to be de-
tected - and the downsampling (DSF) or compression fac-

tor on the detection probability, Monte Carlo (MC) sim-
ulations were done. Each combination of SNR and DSF
was simulated 1000 times, and the success rates are given
in percentage. The position of the interference signal was
chosen in a random uniformly distributed way.

The scenario in the simulation setup was to observe a band-
width of 100 MHz as it is needed for the Galileo E5 band.
A conventional Nyquist sampling approach would have to
use e.g. at least a 100 MSPS I/Q ADC. In the proposed
AIC approach, only the sampling rate Pc of the PN gener-
ator has to fulfil the Nyquist criteria. Therefore a low-rate
ADC with a sampling rate of only 100/DSF MSPS can be
used. The preceding anti-aliasing filter was set to have a
3 dB bandwidth according to the Nyquist frequency of the
low-rate ADC. A simple FIR filter with an order l of 50 was
used to that purpose. The acquired sample size n was 1000
while the stored sample size m was determined according
to Equation 6.

MC simulations were also carried out to verify that the pro-
posed methods could reliably distinguish between different
kind of interferences that belong to the same group but have
different parameters (e.g. between two chirp signals with
different start and/or stop frequency) and between interfer-
ences from different groups (e.g. between a chirp and a
CW or a pulse).

Single Tone Simulation

The reconstruction and detection of tones and multitones
was done using CoSaMP in dependence of the downsam-
pling factor and SNR.

In Figure 6(a) the recovery rate of a constant single tone
with f1 = 44MHz was evaluated. As expected, the detec-
tion probability is better for higher SNR and lower down-
sampling factors. What was not expected is the single line
of excellent detection probability for a downsampling fac-
tor of 120. This artifact appears to origin from the combi-
nation of the PN sequence used and the fixed CW interfer-
ence frequency. To prove this dependence, in Figure 6(c)
the same constant CW interference was used but now the
PN sequence was chosen afresh each MC iteration. Now
this artifact disappears.

Finally, Figure 6(e) shows the results when an arbitrary
chosen single tone frequency was used in each MC run. In
this simulation the PN sequence was again not refreshed,
like it is the case in a real hardware implementation.

It can be seen that a downsampling factor of 80 still pro-
vides a high detection probability when the SNR is larger
than 10 dB. In other words, instead of using an I/Q ADC
with sampling rates of 100 MHz, a low-rate I/Q ADC with
1.25 MHz would be sufficient. Additionally, the snapshot
size is inversely proportional to the downsampling factor.
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(a) Constant frequency single tone with the same PN sequence
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(b) Constant frequency two tones with the same PN sequence
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(c) Constant frequency single tone with different PN sequences
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(d) Constant frequency two tones with different PN sequences
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(e) Arbitrary frequency single tone with the same PN sequence
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(f) Arbitrary frequency two tones with the same PN sequence

Figure 6. Monte Carlo simulation results of the recovery rate of single and multiple tone signals using CoSaMP in dependence of the
downsampling factor and SNR
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Multitones Simulation

In the same way as for a single tone interferer, a multitone
scenario as depicted in Figure 4(a) with a first frequency
of f1=44MHz and a second frequency f2=24MHz with f2
having half the power of f1 was simulated.

The detection was declared successful if the recovery algo-
rithm reports both frequencies correctly. Moreover also the
correct amplitude was monitored. In general the amplitude
was always correct (within less then 0.1 dB variation) when
the correct frequencies were recovered. This demonstrates
the capability of the used CoSaMP recovery algorithm to
preserve the recovered signal’s amplitude.

The simulation results in 6(b) show similar results as the
single tone simulations before. Since the first fixed fre-
quency was the same as for the single CW test, also the
artifact of a higher detection probability for a downsam-
pling factor of 120 appears. When choosing the PN se-
quence afresh for each MC iteration the effect disappears,
as shown in Figure 6(d).

In 6(f) both tone frequencies were chosen in a random way
for each MC iteration.

Chirp Simulation

The recovery of a chirp signal with a start frequency of
-37 MHz and a stop frequency of +11 MHz (as depicted in
Figure 4(b)) was simulated while the chirp start period was
uniformly randomly chosen within the recorded chirp pe-
riod.

The used brute force signal recovery technique relies on the
knowledge that the chirp representation matrix constructed
as explained in Subsection Chirp Signals provides a spar-
sity of exactly one in x where all other values are zero. The
brute force approach tests all possible solutions and returns
the best match as explained in Subsection Signal Recovery
and Equation 13.

The simulation results in Figure 7 show a perfect recovery
rate even with downsampling factors of up to 200 and SNR
values above 10 dB. These excellent results came from the
brute force recovery approach and the fact the representa-
tion matrix and recovery algorithms are insensitive to the
chirp’s amplitude (it is always assumed to be normalized)
in contrast to what CoSaMP is doing.

In practice it is necessary to distinguish between different
kind of chirp signals - e.g. the different chirp jammers
characterized in a database. Therefore it is necessary to re-
construct the result with different representation bases and
to identify the most probable one. When the chirp is not
included in the recovery database, then all the computed
residuals should be similarly high because none of them is
the solution.

To distinguish between different possible chirp signals the
brute force approach also tests all possible solutions for ev-
ery cataloged type of the chirp. The l2-norm of the residual
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Figure 7. The recovery rate of a chirp signal with fstart =
−37MHz, fstop = +11MHz using brute force in de-
pendence of the downsampling factor and SNR

Chirp1 Chirp2 Chirp3 Chirp4 Chirp5

fstart -1 MHz 2 MHz 0 MHz 2 MHz -4 MHz
fstop 2 MHz -1 MHz 2 MHz 1 MHz 5 MHz

DSF=100 Chirp1 Chirp2 Chirp3 Chirp4 Chirp5
SNR [dB] [dB] [dB] [dB] [dB] [dB]

-10 0 0.35 0.38 0.26 0.40
-5 0 1.24 1.46 1.53 1.56
0 0 2.38 3.49 4.07 3.59
5 0 5.60 6.88 7.52 8.18
10 0 9.01 11.65 11.84 12.23
15 0 12.96 15.90 16.47 16.24
20 0 17.29 21.15 21.72 21.67
25 0 22.71 26.71 27.28 27.33
30 0 29.38 32.43 32.44 32.57
35 0 32.78 36.09 36.54 36.61
40 0 37.14 41.69 41.55 41.81
45 0 43.15 47.03 47.28 47.22
50 0 47.35 50.90 51.27 50.98

Table 1. The values of the THi, i = 1, . . . , 5 for different SNR
when Chirp1 should be detected

ri,k, where the subscripts i and k respectively represent the
type of chirp and the solution set, is computed.

Then, for each chirp type the smallest value, e.g. ri,min =
min
k
ri,k is taken. The distance to the other possible solu-

tions is calculated in a logarithmic way and expressed as a
normalized threshold TH:

THi = 20 log
[
min
i
(1/ri,min)/(1/ri,min)

]
. (14)

A simulation with five different kind of chirps (different

International Technical Meeting (ITM) of The Institute of Navigation 
San Diego, CA, January 28-30, 2013

 
852



0 500 1000

0

0.2

0.4

0.6

0.8

1

Triangular Pulse

Samples

A
m

p
lit

u
d

e

0 500 1000

0

0.2

0.4

0.6

0.8

1

Samples

A
m

p
lit

u
d

e

Rectangular Pulse

0 500 1000

0

0.2

0.4

0.6

0.8

1

Gaussian Pulse

Samples

A
m

p
lit

u
d

e

−20 0 20
−60

−50

−40

−30

−20

−10

0
Triangular Pulse

Frequency [MHz]

A
m

p
lit

u
d

e
 [

d
B

]

−20 0 20
−60

−50

−40

−30

−20

−10

0

Frequency [MHz]

A
m

p
lit

u
d

e
 [

d
B

]

Rectangular Pulse

−20 0 20
−60

−50

−40

−30

−20

−10

0
Gaussian Pulse

Frequency [MHz]

A
m

p
lit

u
d

e
 [

d
B

]

Figure 8. Different pulse shapes used in the simulation to be dis-
tinguished
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Figure 9. The recovery rate of a Gaussian pulse

start, stop frequencies and frequency rates) at a constant
downsampling factor of 100 with different SNR was made
and the threshold values TH was calculated according to
Equation 14. The results are given in Table 1.

The conclusion based on Table 1 is that using a thresh-
old TH of 5 dB, different kind of chirps with SNR values
above 5 dB can reliably be detected at a constant down-
sampling factor of 100. This result is in accordance to the
detection probability results given in Figure 7.

DSF=80, Triangular Rectangular Gaussian
SNR [dB] pulse [dB] pulse [dB] pulse [dB]

-10 0.15 0.10 0.00
-5 0.06 0.00 0.05
0 0.45 1.45 0.00
5 0.00 2.70 2.51
10 0.00 0.45 5.92
15 0.00 7.85 5.72
20 0.00 16.17 5.26
25 0.26 12.24 0.00
30 0.00 22.93 17.61
35 0.00 25.17 22.47
40 0.00 33.46 32.72
45 0.00 32.20 36.55
50 0.00 38.97 39.25

Table 2. The values of the THi, i = 1, 2, 3 for different SNR
when a Triangular pulse should be detected

Pulse Simulation

In the following simulation, three different kind of shaped
pulses (Triangular, Rectangular, Gaussian), all with the same
signal power in relation to a 100 samples long, normal-
ized rectangular pulse were tested. The different pulses are
depicted in Figure 8 in their time and frequency domain.
In the simulation their starting position was uniformly ran-
domly chosen within the 1000 acquired samples n. As with
the chirps, the brute force reconstruction approach is used
here.

Looking at Figure 9 it can be seen that the pulse recovery
does not perform as excellent as for the chirp signal. The
results for Triangular, Rectangular pulses are similar and
therefore not shown here. It is concluded that the success
of the recovery does not only depend on the SNR and the
downsampling factor, but also on the amount of the sig-
nal information used. For downsampling factors up to 100
and for SNRs above 20 dB the detection probability is very
good.

To determine the possible threshold that would make it pos-
sible to distinguish between different pulses, the three main
pulses shown in Figure 8 were used.

As was done for the chirp signals, the brute force approach
tests all possible solutions for each type of cataloged pulse.
The TH distance between the best match for each type of
pulse is calculated as explained in Equation 14.

The Tables 2, 3, and 4 show the detection performance
when Triangular, Rectangular, and Gaussian shaped pulses
should be detected. A constant downsampling factor of 80
was used while the SNR was varied. Only one simulation
run was used.

The conclusion based on Tables 2, 3 and 4 is that with a
threshold TH of 5 dB, different kinds of pulses with SNR
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DSF=80, Triangular Rectangular Gaussian
SNR [dB] pulse [dB] pulse [dB] pulse [dB]

-10 0.00 0.00 0.12
-5 0.26 0.00 0.11
0 0.34 0.00 0.53
5 2.82 0.00 1.97
10 4.54 0.00 8.01
15 1.43 0.00 9.28
20 9.53 0.00 13.08
25 16.25 0.00 18.86
30 15.54 0.00 19.74
35 25.11 0.00 28.54
40 30.09 0.00 35.09
45 29.93 0.00 33.41
50 41.64 0.00 49.97

Table 3. The values of the THi, i = 1, 2, 3 for different SNR
when the Rectangular Pulse should be detected

DSF=80, Triangular Rectangular Gaussian
SNR [dB] pulse [dB] pulse [dB] pulse [dB]

-10 0.31 0.44 0.00
-5 0.20 0.00 0.70
0 1.54 1.93 0.00
5 1.21 8.39 0.00
10 9.17 12.81 0.00
15 2.91 10.73 0.00
20 6.85 8.99 0.00
25 16.88 20.43 0.00
30 14.39 17.96 0.00
35 16.93 23.44 0.00
40 24.79 39.22 0.00
45 43.25 47.39 0.00
50 46.05 46.56 0.00

Table 4. The values of the THi, i = 1, 2, 3 for different SNR
when the Gaussian Pulse should be detected

values above 20 dB can reliably be detected at a downsam-
pling factor of 80 with only a few exceptions.

CONCLUSION

In this paper a new method for interference detection of
previously characterized interferences was presented. It
can be used to efficiently monitor e.g. the up to 100 MHz
wide GNSS bands without having to use a Nyquist sam-
pling receiver which would have very high data rates and
high raw data storage requirements. Instead a compressed
sensing random demodulator analog to information con-
verter (AIC) architecture was proposed. Its key element
is the random demodulator which operates at the signal
band’s Nyquist rate. The random demodulator spreads the
signal’s characteristic signature over a wide frequency band.
A low-rate ADC is now sufficient to sample a small portion

of the signature.

Using the knowledge about the interference detection re-
ceiver’s architecture and the well characterized interference
signals to be detected, it is possible to reconstruct the orig-
inal signal out of very few samples. The key element of
a successful recovery is the setup of an interference char-
acterization database where all interferences to be detected
are filed. The construction of the required representation
matrices for the interfere types of CW, Chirps, and Pulses
was explained in detail.

For the reconstruction of CW signals, a CoSaMP algorithm
was used and was shown to be insensitive to the CW fre-
quency and amplitude. For the reconstruction of chirps and
pulses a very fast brute force approach was used. The brute
force method uses the a priori knowledge of the interferer
and its periodic nature. It is insensitive to the interferer
appearance in time domain, but can only reconstruct a nor-
malized version of the signal.

Monte Carlo simulations were carried out to investigate
the detection probability for varying downsampling fac-
tors and signal-to-noise ratios. Additional simulations were
performed to quantify the algorithm’s ability to distinguish
between several interferences belonging to the same family
but having different parameters.

The simulation results show excellent detection rates and
also demonstrate the possibility to distinguish between sev-
eral interferences with a margin larger than 5 dB for

• Tones: for SNR higher than 10 dB and DSF of 80

• Chirps: for SNR higher than 10 dB and DSF of 200

• Pulses: for SNR higher than 20 dB and DSF of 80

To conclude, with this AIC approach a downsampling fac-
tor of 80 provides a reliable high detection probability if the
SNR is larger than 20 dB for all cases. In other words, in-
stead of using an I/Q ADC with sampling rates of 100 MHz,
a low-rate I/Q ADC with 1.25 MHz is sufficient. The snap-
shot size and storage requirements decrease accordingly by
a factor of 80.

Further work will be to implement a basic AIC hardware
demonstrator setup. To this end, it will be necessary to
investigate the impact of ”real hardware” parameter such as
quantization or mismatch between the AIC implementation
and how it is modeled in the signal reconstruction.
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