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ABSTRACT

Spoofing, the transmission of false global navigation satellite system (GNSS) signals, is a problem for a GNSS receiver. There-
fore, a spoofing attack should be detected by a receiver to ensure the integrity of the position, velocity, and time (PVT) solution.



Detecting an attack is more difficult for a snapshot receiver, as temporal changes cannot be used as detection metrics. Further,
if the spoofing attacker has access to the receiver, then ideal conditions for spoofing can be facilitated. This paper presents a
machine learning (ML) approach of detecting a spoofing attack on a multi-antenna snapshot receiver. Blind detection methods
are incorporated, as it is assumed that the antenna array could have been tampered with. The ML approaches include logistic
regression (LR), K-nearest neighbors (KNN), naı̈ve Bayes (NB), decision tree (DT) and support vector machine (SVM) algo-
rithms. To ensure sufficient variance for training of the models, a spoofing simulation platform is developed and described in the
paper. Training and testing is done on both simulated and real world data sets. Preliminary results indicate good classification,
when training on the simulated data and validating on the real recorded data. Several of the ML methods have a classification
f1-score exceeding 99 %. Even simple ML methods, like LR, KNN and NB, show good performance, indicating that the selected
features are already adequately separating the spoofing and real data. This paper represents the first adaption of ML methods to
snapshot based spoofing detection.
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INTRODUCTION

Spoofing is the falsified transmission of global navigation satellite system (GNSS) signals [1–3]. It misleads a GNSS receiver to
a wrong position, velocity, and time (PVT) solution. Therefore, it is a significant threat to the reliability and security of GNSS
receivers. Spoofing is illegal and is associated with criminal, terrorist, and military activities. A spoofer may, for example, allow
cheating with mobile position-based games (like Pokémon-Go!) [4], avoiding GNSS based automatic toll collection (ATC) [5],
illegal fishing in protected maritime areas [6], vehicular theft [7], valuable goods theft [8], or disrupt a GNSS-synchronized
electricity grid [9]. Therefore, it is essential to detect, mitigate, and remove spoofers for GNSS safety. If the spoofing attacker
has direct access to the victim’s GNSS receiver (including spoofing own equipment), then he can facilitate the ideal circumstances
for spoofing, for example, by forcing a cold start of the receiver or electromagnetically isolate the receiver’s GNSS antenna [10,
11]. Therefore, tampering increases the difficulty of detecting a spoofing attack significantly. This paper presents machine
learning (ML) results to improve blind spoofing detection with snapshot-based GNSS receivers. Blind spoofing detection is
the determination of a spoofing attack without sufficient knowledge of the receiver, for example if the receiver is calibrated or
tampered with.

Snapshot processing, also known as cloud-GNSS [12] or server-based processing [13, 14], determines a PVT solution based
only on a couple of milliseconds of data. Since only a snapshot of data is used, conventional processing techniques (e.g., signal
tracking, symbol decoding, or navigation message extraction) are not possible. The snapshot PVT solution relies entirely on the
acquisition results and external ephemeris information. However, the snapshot is typically processed remotely (hence, the terms
cloud-GNSS and server-based) through software-defined radio (SDR) techniques. Therefore, the processing can be adapted as
needed and use recursive processing, leading to flexible architectures [15]. Server-based processing can be applied to low size,
weight, and power (SWAP) devices [16, 17], which cannot afford a full GNSS receiver for positioning. Applications such as
remote sensing and animal tracking can benefit from this technique [18]. Mobile devices can also profit from this approach [19].
Another application for server-based processing is the verification of a receiver’s position using encrypted GNSS signals [20,21].

There are many spoofing detection techniques [2, 10, 22, 23]. However, many of them monitor the tracking– and PVT changes
over time, and are consequently not applicable to snapshot-based receivers. Therefore, there are significant limitations with
snapshot-based receivers against spoofing attacks. Still, one possibility is to use an array of antennas with spatial processing
capabilities to determine the direction of the spoofing signals [24, 25]. It requires a snapshot front-end with multiple calibrated
antennas and multiple synchronized channels for recording. However, if the spoofing attacker can manipulate the hardware, then
an additional risk of calibration loss is perceived. Blind array processing counters this limitation through a relative comparison
between the received signals [26].

Blind array processing with a snapshot receiver to detect spoofing signals was previously investigated [26,27]. This paper extends
the research by combining the previously identified detection metrics along with other snapshot processing outputs through ML.
In the context of ML, a classification problem is set up using the detection metrics as features to classify whether the signals
are spoofed or not. Supervised learning algorithms like logistic regression (LR), K-nearest neighbors (KNN), naı̈ve Bayes (NB),
decision tree (DT), and support vector machine (SVM) divide the feature space into areas corresponding to each of the classes
by learning from given data sets. An exhaustive grid-search obtains the optimal combination of hyper-parameters for the ML
algorithms. Then, the performance of the algorithms is compared with previously unseen data.

ML techniques have been used previously for spoofing detection [28–31]. However, these studies focused on conventional re-
ceivers, which observes the tracking outputs that change over time. This paper applies ML to snapshot-based receivers. Further-
more, special attention is paid to investigate if the algorithms can generalize over different data sets. Especially, using simulated



data for training and recorded data for testing is investigated in detail. Furthermore, the performance of different ML algorithms
is compared.

The paper is structured as follows: the Receiver Architecture shows the receiver architecture and provides necessary foundations
to snapshot processing and previous spoofing detection techniques. Next, the Simulation Environment with the various modules
is presented. The Machine Learning Approaches discuss the ML approaches taken in the study. The Experimental Setup and
Results present the evaluation and outcomes. Finally, the Conclusion is drawn in the last section.

RECEIVER ARCHITECTURE

The system is composed of three main sections. First, a multi-antenna snapshot receiver acquires the satellite vehicle (SV) signals
spatially incoherent. From the output, the antenna steering vectors (ASVs) are estimated and beamforming for spatially coherent
acquisition is applied. The improved acquisition results determine the PVT solution for the snapshot. Lastly, ML methods extract
features from the ASV estimation, blind acquisition and PVT calculation processing blocks, and use these for spoofing detection.
Figure 1 shows the receiver architecture, from the snapshot input to the final spoofing detection. Subsequent sections discuss the
system components in more detail.
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Figure 1: Acquisition methodology

Snapshot Acquisition

A blind acquisition technique, which firstly implements incoherent spatial integration to find the correct correlation peak, sec-
ondly estimates the ASV, and thirdly does coherent spatial integration, has already been developed [32]. This method is consid-
ered blind, as it is independent of direction-of-arrival (DOA) estimation. Consequently, no calibration or information about the
array configuration or orientation is required.

The incoherent acquisition correlates each antenna signal with an SV’s pseudo-random noise (PRN) code separately then com-
bines the output incoherently. The peak within the combined correlation function relates to the estimated code phase τ (I) and
carrier Doppler f (I)

D . The peak values are extracted and used to estimate the ASV. The ASVs determine three spoofing detection
metrics, which are discussed in a later section. The ASVs coherently combine the antenna signals (i.e., beamforming), before
the next correlation with the same PRN, for the second acquisition. It results in a coherent code phase τ (C) and carrier Doppler
f

(C)
D estimations. The delta code ∆τ and delta carrier ∆fD between the two acquisitions are extracted as features for later ML

processing (see Figure 1):

∆τ = τ (I) − τ (C) (1)

∆fD = f
(I)
D − f

(D)
D (2)

The acquisition detection metric is also extracted as a feature. The current implementation uses the peak-to-next-peak detector,
also referred to as a ratio detection (RD) [33]. A limitation of this method is that the estimation of the array steering vector
is based upon the results of incoherent acquisition. These values may contain multi-path or cross-correlation components from
other signals, which can obscure the estimation process. In turn, the erroneous ASV may form a beam that does not sufficiently
suppress these unwanted signal components.



Snapshot Positioning

The PVT algorithm uses the coherent code phase τ (C) and carrier Doppler f (C)
D estimations together with the ephemeris infor-

mation for each SV. The PVT calculation uses a classical least mean squares (LMS) approach [34]. A snapshot receiver cannot
decode the navigation message, due to the limited data, and does not have a time of transmit (ToT) as a reference. Therefore,
ambiguities exist, and the receiver time should also be estimated. As such, a minimum of five SVs is required for the PVT
algorithm. The residuals of the LMS optimization for the PVT solution is used as a feature. However, if only five SVs are visible,
then there are no residuals available.

Once a PVT solution is computed, the receiver and SV positions are known [35]. The elevation angle θel and azimuth angle φaz
for each SV relative to the receiver can then be determined. Further, the dilution of precision (DOP) for the constellation can be
calculated.

Snapshot-Based Spoofing Detection

Spoofing detection with an array of antennas has already been proven to be successful and reliable [25, 36–38]. However, this
requires a calibrated array with known receiver phase offsets and antenna orientation. Further, these methods are DOA based
and estimate the direction to each satellite. It is a limitation as it requires calibration of the antenna array, which increases the
cost of the receiver. Further, tampering with the array counteracts calibration. Blind array processing with a snapshot receiver to
detect spoofing signals was previously investigated [27]. In this study, three detection metrics, which consider a constellation of
satellites, are derived. These metrics include a fraction of detection approach MF, where the fraction of satellites pairs, which are
detected as spoofed are determined; a maximum to mean eigenvalue ratio detector ME; and a Louvain clustering approach MC.
These three metrics rely on a correlation matrix for the ASVs of each acquired satellite’s signal. This subsection summarizes the
three metrics.

The correlation matrix Cnorm, on which all three metrics are based, is required. First, all the estimated ASV ân are stacked in a
matrix Â:

Â = [â1, â2, ..., âNSV ] , (3)

where ân the Nel sized column vector for the array steering vector for the n-th SV. The constellation consists of a total of NSV
satellites. Â is a Nel ×NSV matrix. The matrix is correlated to get a non-normalized correlation matrix C:

C = Â
H
× Â , (4)

where (·)H is the Hermitian transpose of the signal, and “×” is the matrix multiplication. Each element in the matrix is equivalent
to the dot product between each pair of steering vectors. C is an NSV × NSV Hermitian matrix. The magnitude values of the
auto-correlations need to be determined to normalize the matrix:

c =
√

diag (C) , (5)

where c is a column vector containing the magnitude values, and diag (·) takes the diagonal of a matrix. The normalized
correlation matrix Cnorm is calculated as:

Cnorm = <{C} ◦
(
c× cT

)◦−1
, (6)

where <{·} takes the real component of the correlation, ◦ is the Hadamard product, and (·)◦−1 is the Hadamard inverse. Cnorm
is also a Hermitian matrix. Each element of this matrix has the form:

Cnorm(n,m) =
<
{

â∗n · âm
}

‖ân‖ ‖âm‖
(7)

where ‖an‖ is the magnitude of the n-th ASV.

The first metric considers the fraction of detections in a detection matrix D. This matrix depends on the correlation matrix Cnorm:

D(n,m) =

{
1, if Cnorm(n,m) ≥ λf
0, otherwise . (8)

where λf is the threshold value for the single detections. The threshold is selected as [27]:

λf = cos (15◦) ≈ 0.966 (9)

Note that the diagonal of the detection matrix D is always unitary, due to the correction process, and needs to be removed. The
fraction of detections metric MF is:

MF =

∑
n,mD(n,m)−NSV

NSV(NSV − 1)
. (10)



The second metric uses the Eigenvalue decomposition:

Cnorm = QcΛcQ−1
c , (11)

where Cnorm is the matrix to be decomposed, Qc is a matrix where each column is a unique Eigenvector, and Λc is a diagonal
matrix containing the Eigenvalues. The Eigenvalues are in descending order. The ratio of the maximum Eigenvalue to the mean
of the Eigenvalues is used as a detection metric [39]:

ME =
‖λ1‖

1
NSV

∑
i ‖λi‖

=
‖Λc(1, 1)‖

1
NSV
‖diag (Λc)‖

, (12)

where λ1 is the largest Eigenvalue, λi is the i-th Eigenvalue from the matrix, and NSV is the number of Eigenvalues.

The third metric uses clustering methods. The Louvain clustering algorithm is an iterative algorithm that optimizes the modularity
of a data set [40, 41]. The data set consists of several nodes and edges (links) between these nodes. Highly connected nodes are
grouped into communities by this algorithm. The modularity of the data set is an indication of the connectedness of the nodes.
Hence, high modularity indicates that the nodes can be grouped efficiently into communities, whereas low modularity indicates
that the data is highly random and not easily grouped into communities. This algorithm requires a matrix which contains the
weight of the edges between each of the nodes. Higher values in this matrix correspond to stronger links between the nodes.
Further, this algorithm requires a vector v which contains a list of the different communities.

Maximizing the modularity of the data set achieves useful clustering. The modularity Q is defined as:

Q =
1

2m

∑
i,j

(
Cnorm(i, j)− k(i)k(j)

2m

)
· δ(v(i), v(j)) , (13)

where m is the total connectedness between all of the nodes:

m =
1

2

∑
i,j

Cnorm(i, j) , (14)

and ki is the connectedness of the i-th node to the other nodes and is defined as:

k(i) =
∑
j

Cnorm(i, j) . (15)

Lastly, δ(·) is a modified Dirac function and is defined as:

δ(v(i), v(j)) =

{
1, if v(i) = v(j)
0, otherwise . (16)

At the start of the clustering process, all of the nodes are in separate communities. The initial modularity Q for the system is
calculated. Systematically, each node is moved to different communities. The community, which results in the most significant
increase of system modularity Q for each node, is selected as the new community for that node. When all nodes are adjusted
to the optimal community, a new system is formed by grouping nodes from the same community. Thereby, implicitly reducing
the dimensions of the matrix Â in each iteration. After that, the process is repeated until no improvement of the modularity Q is
achievable. As the algorithm iterates, similar communities are clustered together to form new and more populous communities.
The clustering metric is simply the modularity:

MC = Q (17)

These three metrics are applied to the correlation matrix Cnorm, which is derived from the ASV matrix Â. It determines how
similar the system of SVs are. However, the approach could also use the unit vector to each SV to determine how similar the SV
orientations are. Therefore, the metrics based on the ASVs (M (AV)

F , M (AV)
E , and M (AV)

C ), and the SVs (M (SV)
F , M (SV)

E , and M (SV)
C ),

are used for features for the machine learning.

Machine Learning Techniques

The ML is the new module introduced in this paper. The motivation of ML is to combine the detection metric with other receiver
outputs to improve the detection capabilities optimally using more information. The current objective is to develop a method
for detecting straightforward spoofing attacks and to establish a solid foundation. However, once the framework is in place,
more complex problems are solvable, like a partially spoofed constellation, severe multi-path detection, or spoofing attack type
classification. The information analysis and ML approach are described in more detail in a later section.



SIMULATION ENVIRONMENT

This section describes the simulation environment and models. A limitation of previous work [27] was limited scenarios where
evaluated. It results in a sparse representation of the scenarios and with issues with ML model training. A snapshot receiver for
different scenarios is simulated and used for the training of the ML methods in later sections to address this issue. Further, a high
degree of statistical variance in the simulation is required to avoid biases during ML training or risk of over-fitting to the data set.
It also makes the problem more generic as it decouples the training from a specific receiver and scenario. Lastly, the simulation
model warrants more detail, as the assumptions made in simulations directly impact the results. It emphasizes the need for clarity
in the simulation procedure.

Random Variables

In the simulation environment, several different random variables (RVs) introduce statistical variance [42]. Most commonly
uniform distributed (U(a, b)) and Gaussian distributed (G(µ, σ) RVs are used:

U(a, b) : fu(x) =

{
1
b−a if a ≤ x ≤ b
0 otherwise

(18)

G(µ, σ) : fg(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

(19)

where fu(x) and fg(x) are the associated probability density functions (PDFs) for these distributions. A chi-squared RV (χ2(k))
is a compounded distribution. It is the sum of k squared Gaussian RVs, and has a PDF of fχ(x, k):

χ2(k) =
∑
k

G(0, 1)2 : fχ(x, k) =

{
xk/2−1e−x/2

2k/2Γ(k/2)
if 0 ≤ x

0 otherwise
(20)

Lastly, a Rayleigh RV (R(a)) is the square-root of a chi-squared RV of order k = 2, and has a PDF of fr(x):

R(a) = a×
√
χ2(2) : fr(x) =

{
x
σ2 e

−x2

2σ2 if 0 ≤ x
0 otherwise

(21)

Scenario Selection

Each scenario requires a satellite constellation for the transmitted signals and a receiver position. A satellite constellation, using
the Keplerian orbital parameters from the Galileo almanac [43], is generated. The time of receive (ToR) is a uniform distributed
RV, starting with the almanac publishing date and ending 10 days later. The period relates to the time it takes the Galileo
constellation to be at the same locations relative to earth at the same time of day.

A receiver position depends on three RVs. The longitude φlong is a uniform distributed RV:

φlong ∼ U(−180◦, 180◦) (22)

The latitude θlat is a transformed from a uniform distributed RV:

θlat =
180◦

π
cos−1(xlat)− 90◦ and xlat ∼ U(−1, 1) (23)

As a result, the receiver has an equal probability of being on any location on the earth’s surface1. The altitude aalt is simulated
as Rayleigh distribution with a scale parameter of 100 m: aalt ∼ R(100 m). The receiver position and SV position determine
the elevation angle θel and azimuth angle φaz for each satellite. Fig 2 shows the simulated position PDFs. The receiver specific
properties are determined in the next section.

1Assuming the earth is spherical. Considering the earth as an ellipsoid would improve this model, but it is adequate for the current implementation.
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Figure 2: Simulated position statistics

Receiver Selection

The simulated receiver has an array of antennas. For GNSS, a uniform circular array (UCA) or a uniform circular array with a
center element (UCA-CE) is preferred, as these arrays allow two-dimensional (2-D) beamforming and a stable phase center. The
three-dimensional (3-D) position vector of each antenna element dn is determined relative to the center of the array. For a UCA
consisting of Nel elements, the n-th element position vector dn(r) is:

dn(r) =

〈
r sin

(
2π

n

Nel

)
, r cos

(
2π

n

Nel

)
, 0

〉
; n ∈ {0, . . . , Nel − 1} (24)

A UCA-CE has the same structure, but an extra element as added at the origin. The position vector dn(r) for a UCA-CE is:

dn(r) =

{ 〈
r sin

(
2π n

Nel−1

)
, r cos

(
2π n

Nel−1

)
, 0
〉

if 0 ≤ n < Nel − 1

〈0, 0, 0〉 if n = Nel − 1
(25)

For the simulation, UCAs with three to six elements and UCA-CEs with four to seven elements are selected. Figure 3 displays
the different array types and the associated likelihood of being selected during the scenario simulation. Most commonly, four-
element and six-element UCAs are selected, with 35 % and 45 % probability, respectively.
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Figure 3: UCA and UCA-CE arrays and the percentage of occurrence in simulation

The radius of the outer ring r is, on average, set to a half-wavelength spacing for the center of the GNSS L1 band (λ/2 =
95.1 mm), as this is a popular selection for GNSS antenna arrays. A uniform RV is introduced to account for different radius
selections used for antenna array manufacturers:

r̃ = r + ru =
λ

2
+ ru; ru U(−10 mm, 10 mm) (26)



Each antenna element has an additional position uncertainty of 10 mm per element. It represents manufacturing and mounting
tolerances and errors, which may move the phase center of the antenna. The resultant position for the n-th antenna element is
consequently randomized:

d̃n = dn

(
λ

2

)
+ 〈dx, dy, dz〉 ; {dx, dy, dz} ∼ G(0, 10 mm) (27)

The array orientation is determined by the north offset φN , and the array tilt as an angle from the zenith θT . The north offset
is the angle between the reference antenna and the geographic north. The angle relates to the difference between the angle of
arrival (AOA) and the DOA for a received signal. It is modeled as a uniform distributed RV, φN ∼ U(−180, 180) [deg]. It
represents an antenna array that can be mounted on a mobile platform. The array tilt angle is modeled as a zero-mean Gaussian
RV θT ∼ G(0, 10◦). It represents a vehicular application over some uneven ground. The orientation can be added to the position
vector by using appropriate rotation matrices (e.g., θ degree rotation around the x-axis uses the rotation matrix Rx(θ)):

d̂n = d̃n ×Rz (φN )×Rx (θT ) (28)

Figure 4 shows the diagram and the generated PDFs for the orientations.
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Figure 4: Array orientation

Once the antenna positions d̂n, and the SV’s position are known (θel and φaz), the array signal model can be generated. The
received signal model is:

y(t) = Ccp ×A× x(t) + n(t) (29)

y(t) is the received signal and is a Nel element column vector, and n(t) is a noise vector of the same size consisting of additive
white Gaussian noise (AWGN). x(t) is the received signal from each SV and is an NSV element column vector. The array matrix
A is the complex gain for each signal at each antenna element and is a Nel×NSV matrix. The coupling matrix Ccp is a Nel×Nel
square matrix and represents the coupling between the antenna elements.

Each column of the array matrix A is the ASV to a specific SV. The ASVs are estimated by a receiver for beamforming purposes
and forms part of the spoofing detection. In the non-spoofing case, all of the ASVs relate to the respective SVs. However, in the
spoofed case, all of the ASVs are the same. The theoretical model for a calibrated array matrix A is [44]:

A(n,m) = e− jk(φaz(m),θel(m))·d̂n (30)

where k(φaz, θel) is the wave vector and is a function of the wavelength λ and the DOA for each SV:

k(φaz, θel) =
2π

λ
〈cosφaz cos θel, sinφaz cos θel, sin θel〉 (31)

The simulated matrix Â includes additional receiver effects. It assumes that the receiver switches on, then takes a snapshot,
and finally switches off again. With each new power-cycle, the digital down-converters (DDCs) of the radio-frequency front-end
(RFFE) have a relative phase-offset, and as only limited data is recorded, no calibration is possible. Further, a low-cost receiver
is likely not calibrated (i.e., RFFE phase offsets and antenna phase offsets) as this dramatically increases costs. Lastly, temporal
changes to the receiver, like temperature changes and aging, may also induce new offsets. Therefore, considering all these effects,
each antenna element is simulated to have an arbitrary phase offset eφn ∼ U(0, 2π). This phase-offset eφn is constant throughout
the snapshot and is the same for every signal received from the same antenna.



The antenna also contributes to the received signal power. A typical GNSS antenna forms a main lobe towards the zenith [45].
It suppresses low elevation signals to reduce multi-path effects. A patch-like antenna is assumed for the simulation with a
sinc-function-based antenna pattern:

Gant(θel) = Gant,main + 10 log10

(
sinc2

(
90− θel

2B

))
(32)

Gant(θel) is the total antenna gain, Gant,main is the gain of the main lobe, and B is the two-sided -3 dB antenna beamwidth. The
beamwidth is constant in an antenna array, but differs for each scenario according to a chi-squared RV:

B = 2× (45◦ + 15◦ · bx) ; bx ∼ χ2(2) (33)

The gain of the main lobe Gant,main depends on the efficiency of the antenna:

Gant,main = 10 log10

(
2η

1− cos (B/2)

)
; η ∼ G(0.6, 0.14) (34)

The efficiency η relates to the design, composition, and manufacturing quality of the antenna. External factors, like the impact
of the mounting structure or the use of a radome, also affect efficiency. Figure 5 shows the PDFs of the antenna properties.
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Figure 5: Simulated position statistics

The simulated matrix Ã considers these effects:

Ã(n,m) = Gant(θel(m)) · e− jk(φaz(m),θel(m))·d̂n+eφn (35)

The coupling matrix Ccp for an ideal system is an identity matrix, i.e., no coupling. For this simulation, the coupling matrix is
defined as follows for a UCA:

Ccp(n,m) =


1 if n = m
0.1 · ejcx if |n−m| = 1; cx ∼ U(0, 2π)
0.01 · ejcx if |n−m| = 1; cx ∼ U(0, 2π)
0 otherwise

(36)

Notice that the nearest antenna has 10 dB isolation with a random phase.

Each antenna has a low-noise amplifier (LNA). The LNA amplifies the signal before the receiver can further process it. As the
LNA is the first amplifier in the receiver it has the most significant influence to the received noise power σ2

n. The noise power of
the receiver depends on the LNA’s noise factor NF

2, the receiver temperature T , the receiver bandwidth BW, and Boltzmann’s
constant k:

σ2
n = NF · T · BW · k (37)

The noise factor NF is modeled as:
NF = 10

1+xn
10 ; xn ∼ R(1) (38)

The receiver temperature is simulated as a Gaussian RV T ∼ G(18◦C, 7◦C). The receiver bandwidth BW is selected to be
10.125, 20.25, 40.5, and 81 MHz, with 25 %, 25 %, 40 % and 10 % likelihoods, respectively.

2The noise figure is the decibel representation of the noise factor.



Path-Loss Effects

The constellation information, along with the receiver platform information, determines the path-loss of the signals between
the SV and the receiver [46]. Further, combining the path-loss with the noise power determines the theoretical carrier-to-noise
density ratio (C/N0) for a scenario. The path-loss Lpath is determined with Frii’s free space loss equation [47]:

Lpath[dB] = Pr − Pt = Gt +Gr + 20 log

(
λ

4πds

)
(39)

Pt and Pr are the transmitted and received signal powers, Gt and Gr are the transmit and receive antenna gains, λ is the
wavelength of the signal, and ds is the separation distance between the transmitter and the receiver. It is a simplistic model, as
it does not include multi-path, shadowing, scintillation, or atmospheric effects. It can be improved to use more effective models
and is considered a future expansion of the simulation platform.

Figure 6 shows the summarized statistics of the C/N0, along with the number of visible SVs for the simulation. An elevation
mask of 5 ◦ filters the number of visible satellites.
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Figure 6: Simulated position statistics

Processing Simulation

The core of snapshot processing is the acquisition of the SVs. In the acquisition processing, the received signals are correlated
with each SV’s PRN code. The correlation, even if efficient parallel search methods are employed, is highly processing intensive.
The full signal is not generated to reduce simulation duration significantly. Only a single chip of the PRN code for each SV and
antenna is generated. As an example of the efficiency, it results in a 4096-factor reduction of the generated signal for Galileo
E1B/C. The simulation primarily focuses on Galileo E1B/C, which uses a composite binary offset carrier (CBOC) modulation.
The CBOC consists out of two binary offset carrier (BOC) modulations. A BOCc(1,1) and a BOCc(6,1). Due to bandwidth
limitations applied to snapshot processing, often only the BOCc(1,1) component is available. Therefore, only the BOCc(1,1) is
used in the simulations.

The auto-correlation function (ACF) is the output of the correlation. Figure 7 shows the simulated ACF. Here a BOCc(1,1)
signal is simulated, with a coherent integration time τint of 1 ms and a theoretical C/N0 of 40 dBHz. The ACF can be generated
by correlating the single chip. On the contrary, noise generation is more complicated. A gird of cells is generated, each an
AWGN RVs, which represent different time offsets (chips) and frequency offsets (carrier Dopplers). In an actual receiver, the
acquisition processing causes each neighboring cells to be correlated. The noise grid is filtered with a 2-D mask (See Figure 7b),
to simulate this behavior. In the time dimension, the mask represents a single chip (including the bandwidth limitation of the
receiver fronted), in the frequency dimension the mask represents the Doppler response:

h(t, f) =

{
x(BL)

Chip(t)× sinc (fτint) if |t| <= τint, |f | <= 2
τint

0 otherwise
(40)

where τint is the coherent integration time, and x(BL)
Chip(t) is the band-limited modulated chip derived as:

x(BL)
Chip(t) = xChip(t) ∗ sinc

(
t
BW
fs

)
(41)

where BW is the analog bandwidth of the receiver, fs is the temporal sample-rate of the generated grid, and (·) ∗ (·) denotes the
convolution function (i.e., filter).
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Figure 7: Simulated position statistics

For each scenario, NSV×Nel×Ninco grids are generated. The specific SV’s C/N0 determines the noise power for the associated
blocks, and the array steering matrix Ã determines the complex magnitude for each antenna element and SV. The Ninco number
of incoherent epochs depends on the snapshot length and integration time τint.

For incoherent acquisition, the Nel × Ninco grids are added together incoherently. For coherent acquisition, Nel sets of grids
are combined through beamforming using the ASV. After that, the Ninco beamformed signals are combined incoherently (i.e.,
temporal incoherent acquisition). The processed girds are used to find the peak, which determines the estimated code phases
(τ (I) and τ (C)) and carrier Doppler (f (I)

D and f (C)
D ). It allows the acquisition errors to be simulated and to propagate down the

receiver chain to the PVT. Therefore, it facilitates accurate receiver modeling.

MACHINE LEARNING APPROACHES

Apart from the model-based approach that the derived metrics [27] are based on, they can also be understood as features in a ML
sense. Therefore, the recorded data set is interpreted as list of feature vectors xi containing the snapshot observations aligned
with a binary class labels y ∈ (Spoofed, not Spoofed). Data sets are then used to train classifiers to decide between the labels
based on observed feature vectors. The data imply a decision rule, dividing the feature space into regions corresponding to each
of the classes. The ML pipeline is depicted in Fig. 8. Suitable subsets of the data are selected for testing, training and validation.

Test

Training

Test
Data

Pre-processing Classification

Training &
Validation

Data
Pre-processing

Training &
Hyper-parameter

Optimization

Trained
Models

Evaluation

Figure 8: The ML pipeline.

The specific setups used for validation is presented in the experimental setup section.

First, the data are pre-processed by removing incomplete data and scaling the features to uniform minima and maxima. Next,
the data set is divided into 70 % training and 30 % test data. For hyper-paramter optimization [48], further division on train and
validation sets is made based on stratified k-fold cross-validation [49], where the number of folds is chosen to be k = 5. Hereby,



the test data set is split into k consecutive folds where each fold is then used once as a validation while the k− 1 remaining folds
form the training set. There are many ML models [50], but for this paper LR, KNN, NB, DT and SVM are considered.

LR is a statistical model in which the probabilities describing the possible outcomes of a single trial are modeled using a logistic
function [51, 52]. Typically a sigmoid function is used. The sigmoid function is an S-shaped curve that can take any real-
valued number and map it into a value between 0 and 1. A threshold on the sigmoid function decides the class to which the
feature vector belongs to. LR is straightforward to implement, interpret and efficient to train. Also it does not require too many
computational resources and data preparation. The main limitation is the assumption of linearity between the dependent variables
and the independent variables or features. Removing features which are uncorrelated to the output variable does not improve the
algorithm. Further, removing correlated attributes have the same effect. Therefore, feature engineering plays an important role
in regards to the performance.

A KNN classifier is a simple algorithm that stores all available samples in memory and assigns a new feature vector xi to the
class the majority of its nearest neighbors belong to [53, 54]. The closest neighbors are the values which are most similar to the
new feature set, and are determined using a distance function. For example, the Euclidean distance between two feature sets is
often used:

Di,j = ‖xi − xj‖2 (42)

The nearest neighbor is the feature set xj , which minimizes the distance Di,j . In the simplest case (i.e., k = 1), the class of the
nearest neighbor determines the class of the new feature set. If more neighbors are considered, a voting process selects the class
from the k nearest neighbors. The advantage of such a memory-based approach is that the classifier immediately adapts as new
training data are introduced, as all the observations are kept permanently. Furthermore, to optimize the classification performance
a suitable value of the the number of neighbors k must be determined. Since KNN performs on-the-spot learning, a well-tuned
k can model complex decision spaces having arbitrarily complicated decision boundaries. However, the comparison of the
new feature set with the entire data set for each prediction results in significant processing requirements. Consequently, KNN
classifiers do not meet the performance requirements for many end-user applications, especially with large data sets. However,
they are often used as a baseline classifier, due to the simplicity an uncompressed representation of the whole dataset.

NB classifiers are based on Bayes’ theorem with the assumption of statistical independence of the features [55]. Bayes’ theorem
determines the probability of the l-th class to be true for a given feature set x:

p(Cl|x) =
p(Cl)p(x|Cl)

p(x)
(43)

where p(·) is the probability of an event, and p(A|B) is the conditional probability of A given that B is true. A NB model
is straightforward to build, with no complicated iterative parameter estimation (if any), which makes it particularly attractive
for large data sets or highly dimensional data. It provides straightforward probabilistic prediction and is simple to interpret.
However, the underlying simplified statistical model (usually a Gaussian distribution of the features within each class) does not
hold for most real-world problems that have more complex feature-domain distributions. It comes at the cost of only being able
to capture much simpler mappings between the input variables and the output class (hence, it is called “naı̈ve”). Therefore, NB
often cannot compete with more complicated ML techniques in terms of accuracy.

DT classifiers use the training data to learn simple decision rules from the features in the form of a “tree” of consecutive, one-
dimensional conditions [56]. Within the tree structure, leaves represent classification results, non-leaf nodes represent conditions
for single features, and branches represent conjunctions of features that lead to the classifications. At the non-leaf nodes, a se-
lection measure is used to choose the rule that properly splits between the different classes. Since DT classifiers are defined by
a series of conditional statements, their popularity is exactly due to the ability to handle complex problems by providing under-
standable classification rules, which are easier to interpret and implement even on simple hardware architectures. Furthermore,
by choosing single features for each of the node, the classifier implicitly prioritizes the most important features, simplifying
feature-engineering. However, decision trees tend to over-fit to data, especially for large numbers of nodes.

SVM classifiers create a decision hyper-planes to separate a set of observations [57]. The hyper-planes are defined by the set
of closest observations for each class, called the support vectors. Since the support vectors are a subset of the training points,
less computational complexity is required for training and using the model. Over-fitting is uncommon due to the generalized
separator. The simplest is the linear support vector machine (L-SVM), and can be described as:

yi
(
ωTxi + b

)
≤ 1− ζi ; ζi ≥ 0 (44)

where xi is the feature vector, ω is the weight vector, b is the bias, yi is the i-th hyper-plane, and ζi is the slack variable used for
handling non-separable data. The weights ω and bias b of the model is optimized through:

min
{ω,b}

1

2
‖ω‖2 + C

Np∑
i=1

ζi (45)



where Np is the number of hyper-planes, and C is the capacity constant, also referred to as the penalty parameter of the error
term. The maximum distance between data points of both classes provides some reinforcement so that future data points can be
classified with more confidence. While a SVM is a linear classifier, it can applied to non-linear problems by the use of so-called
“kernel trick”, allowing SVMs application to non-linear problems. As an example, a radial basis function (RBF) kernel kRBF is
defined as:

kRBF(xi,xj) = Ψ(xi) ·Ψ(xj) = e−γ‖xi−xj‖
2

(46)

where γ the scaling function of the kernel. The resultant model is:

yi
(
ωTΨ(xi) + b

)
≤ 1− ζi ; ζi ≥ 0 (47)

These functions project the data into a space with higher dimensions to separate the data more effectively. SVM is useful in high
dimensional spaces. Even when the input data are non-separable it generates accurate classification results due to its robustness.
SVM classifiers are also commonly used for spoofing estimation in GNSS [28–31].

The f1-score is a balanced quantitative measure of quality and determines the performance of classification methods [58]. It
distinguishes the correct classification within different classes and represents a harmonic mean of precision and recall. Therefore,
this score takes both false positives (precision) and false negatives (recall) into account. It is defined as:

f1 =
2

precision−1 + recall−1 =
P (H0|H0)

P (H0|H0) + 1
2 (P (H0|H1) + P (H1|H0))

(48)

where P (·|·) is the conditional probability, P (H0|H0) is a true positive for spoofing detection, P (H0|H1) is a false positive, and
P (H1|H0) is a false negative.

EXPERIMENTAL SETUP

The proposed ML pipeline is applied on two different data sets3. The first data-set contains data obtained from the simulation
environment described in earlier sections. The simulated data is primarily used for training and consists of multiple scenarios
and antenna arrays to generalize the models. The simulated data set consists of 200 000 data points, of which 70 % are simulated
GNSS-only scenarios, and 30 % are spoofed scenarios. The simulation environment only generates Galileo E1B/C signals.

The second data set consists of measurement data recorded in four scenarios: two real GNSS signals from open-sky recordings
using antenna arrays, and two laboratory spoofing attacks using a Spirent GSS9000 radio-frequency constellation simulator
(RFCS). For the open-sky recordings four- and six-element UCAs were used. The data for all four scenarios are recorded
with a six-channel receiver, which consisted of two synchronized three-channel Flexiband RFFEs [59]. In the case where only
four channels where used, the extra two channels are simply discarded. The RFFE used either a sample-rate of 10.125 MHz
or 40.5 MHz, at an analog-to-digital converter (ADC) quantization word-length of 8 bit and 4 bit complex, respectively. One
spoofing attack uses a radio-frequency (RF) splitter, which provides every RFFE channel the same signal. Another spoofing
attack is a “tin can” attack [10, 11], where a tin can is placed over an antenna array. Inside the tin can is a radiating antenna,
which transmits the spoofing signal. Each recording is one minute long and evaluated in post-processing. From the recorded
data, snapshots are extracted. Snapshot sizes between 2 ms to 20 ms are extracted, and either GPS L1 C/A signals or Galileo E1B
signals are used. Table 1 shows a summary of the recorded data set, the applied processing, and references to other evaluations.

Table 1: Summary of the recorded data-set

Scenario Type Input Number of Sample-rate Word-length GNSS Number of Published
No elements Nel [MHz] [bits] Signals Snapshots results

# 1 GNSS 6-UCA 6 10.125 8 L1CA 59 812 [26, 27, 32]

# 2 GNSS 4-UCA 4 40.5 4 E1B+L1CA 19 994 [11]

# 3 Spoof Splitter 6 10.125 8 L1CA 60 000 [26, 27, 32]

# 4 Spoof 4-UCA+ 4 40.5 4 E1B+L1CA 20 000 [11]

Tin-Can

For the ML approaches three groups of studies are performed:

1. Scenario #1: Training and validation on the same data set (i.e., either only the simulated or recorded data is used).
3The data-sets are available at https://www.iis.fraunhofer.de/positioning

https://www.iis.fraunhofer.de/positioning


2. Scenario #2: Training on one data set and then validation on another (e.g., train on the simulated data and then validate on
the recorded data).

3. Scenario #3: Training on one data set and then validation on another, but restricting the simulated data set to only use
four- and six-element UCA arrays (these are the only arrays that are also present in the real data set).

Through cross validation between the various data sets, the robustness and validity of the ML models can be assessed and the
simulation environment can be verified. Table 2 shows the distribution of the data sets for the different scenarios.

Table 2: Combinations of data sets

Scenario Scenario Training Testing Number of Number of
No Name data set data set training samples of testing samples
#1 Only individual simulated simulated 140 000 60 00

data sets recorded recorded 112 000 48 000
#2 Using two dif- simulated recorded 140 000 112 000

ferent data sets recorded simulated 112 000 200 000
#3 Antenna-specific simulated recorded 117 000 200 000

data sets recorded simulated 112 000 117 000
simulated (4,6) simulated (3,5,7) 117 000 32 000

Optimal hyper-parameters were obtained using a cross-validated grid search method, optimizing the models in terms of classifica-
tion performance on the validation data. The f1-score assess the classification performance, because it is a balanced quantitative
measure of quality.

In the grid search, first,the stratified k-fold and the number of folds are chosen for the cross-validation scheme [49]. A set of
the suitable hyper-parameters and aligned parameter search spaces, listed in Table 3 is chosen for each of the models: For the
KNN model only the optimal number of neighbors k are determined. The DT grid search requires the split criterion and the
maximum depth of the tree (“maxdepth”). Lastly, the SVM model is used with linear and RBF kernels. For each kernel the
penalty parameter of the error term C, and the radius of influence of samples selected as support vectors γ are determined.

For each cross-fold, all possible parameter combinations are tested on the corresponding cross-fold validation set to obtain the
parameters producing the highest classification score (i.e., f1-score). The best parameter combinations are then used to train on
the whole training set and generate the final model used in evaluation.

Table 3: Grid search setup

Model Parameter Selection grid
KNN k neighbors ∈ {2, 3, · · · , 10}
DT criterion ∈ {gini, entropy}

maxdepth ∈ {1, · · · , 25}
SVM kernel ∈ {linear, RBF, }

C ∈ {10−4, 10−4, · · · , 104}
γ ∈ {10−4, 10−4, · · · , 104}

For evaluation, the test data were pre-processed in the same manner as the training and validation data. The trained models were
then used to perform classification. Finally, the classification results were compared with the true labels and evaluated with the
f1-score.

RESULTS

This section presents the results from training and validating the ML models.

Feature Analysis

Figure 9 shows the correlation matrix of the two data sets for all features.
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(b) Simulation data set

Figure 9: Feature correlation matrices for the two data sets

Optimization Results

The optimal values as determined by the grid-search is shown in Table 4. There is a strong coherency for the optimal parameters
between the simulated data for all antenna arrays and only the four and six element antenna arrays. However, the recordings have
significantly different optimal values.

Performance Results

Table 5 shows the f1-score for the different methods on the independent test set.

High classification scores are achieved for scenario #1, where training and testing are both from the same data sets. In the case of
real recordings, perfect detection is achieved by most of the classifiers and the error is slightly higher for NB. This indicates that
the classes are non-overlapping in feature space. In the case of simulation data, the almost perfect score means that the data are
similarly separable for all classifiers. However, the slight degradation of performance is an indication that the data is less sparse.
These results prove the feasibility of the proposed data sets and features for the implied ML task. Significant and exploitable
difference exists in both data sets; hence, the features are discriminative.

An important question is whether the trained classifiers can be used to generalize over data sets. Specifically, the use of recorded



Table 4: Optimal parameters from the grid search for training data.

Model Parameter Simulated(all) Simulated data(4,6) Real Recordings
KNN k 5 3 2

DT criterion entropy entropy gini

maxdepth 22 18 2

Linear C 1 1 10−4

RBF C 100 10 10−4

SVM γ 0.1 scale 0.1

LR C 100 10 10−4

Table 5: f1 scores for the ML models

Scenario Data set f1 score [%]
No. Train Eval LR KNN NB DT L-SVM RBF-SVM
#1 recorded recorded 100.0 100.0 99.93 100.0 100.0 100.0
#1 simulated simulated 100.0 99.99 96.37 99.94 100.0 99.99
#2 simulated recorded 99.66 99.66 99.45 89.58 98.71 98.39
#2 recorded simulated 89.82 83.44 0.0 73.02 86.56 84.73

#3 simulated(4,6) recorded 96.28 99.10 0.0 92.11 95.96 92.42

#3 recorded simulated(4,6) 89.78 83.37 0.0 73.02 86.65 84.58

#3 simulated(4,6) simulated(3,5,7) 99.86 99.87 0.0 99.58 99.72 99.93
∗Values in blue are above 99 % and values in red are below 90 %.

data for the evaluation of classifiers trained on simulated data is of practical importance. Training on the simulated data and
evaluation on the recorded data for scenario #2 yielded high results for most of the classifiers. The highest overall success rate
of 99.66 % was achieved by LR and KNN, followed by NB. Over-fitting is common with decision trees simply due to the nature
of their training. Lower depth makes the model faster but not as accurate, whereas higher depths gives accuracy on validation
data but risks over-fitting. These results verify that the proposed simulation environment can be used to generate data for real-
world applications, as the classifiers (apart from DT) are able to generalize between the data-sets achieving an almost perfect
f1-score. Therefore, the results indicate that the simulated data can enable reliable spoofing classification. In contrast, training
on the recorded data in scenario #2, yielded significantly poorer results, implying that the real recordings do not generalize well
to the simulated data set. The recorded data consists of limited antenna configurations and satellite constellations. Therefore, it
confirms the original hypothesis that the recorded data is too sparse for ML and cannot be used to accurately train ML models.
Also notable is the decrease of the f1-score to 0.0 for NB. Analysis of the confusion matrices showed that for this case, the whole
data set was predicted as “not spoofed”. This could be attributed to a highly multi-modal distribution of the classes within the
feature-domain that cannot be modelled properly by Gaussian distributions. Consequently, the estimated distributions overlap
heavily and the classifier decides for the class with the higher prior.

In scenario #3, when using simulated data selected corresponding to the antenna setups in the real recordings, the performance
slightly worse than with using the whole data set (expect for DT). This indicates that, while the overall modelling in the simulation
environment is suitable, the specific antenna influence might be different under realistic conditions. This is backed up by the
fact that there is no performance increase for training with real recordings and testing with simulated data for the corresponding
antenna configurations. This results is unexpected and needs to be studied further and clarified in the future.

In terms of classifier comparison, both LR and L-SVM generated comparatively high classification results for all evaluations.
They are in line with KNN, but the linear models are much more efficient in terms of computational requirements for prediction
as discussed earlier. DT, as discussed earlier over-fits to specific data-sets and shows worse generalization results. While NB
produced high f1-scores for training with the whole simulated and testing with the whole real data set, it is heavily biased toward
“not spoofed” for training with real data and the antenna-specific evaluations.



CONCLUSION

This paper presents an investigation on different ML approaches to detect spoofing signals for a multi-antenna snapshot receiver.
Specifically, to address short-comings with currently available recorded data being too sparse for reliable ML classification, the
use of simulated data for training before applying the ML models in real-world application is investigated. First, a simulation
environment for multi-antenna snapshot receivers is created and described in detail. Second, the simulation environment is
used for training of the ML algorithms. Third, the real recorded data is used to validate the ML approaches and the simulation
environment. Additional cross-validation and training is also done, to ensure reliable results.

Training and validating on the same data sets showed the best results, as expected. Training on the simulated data and then
validating on the recorded data had a small decrease in performance. However, several algorithms still achieved a better than
99 % f1-score. It indicates that the simulation environment can be used to accurately classify the data. Training on the recorded
data and validating on the simulation data had significantly poorer results, with all f1-scores below 90 % This highlights risks
that the recorded data is sparse, and prone to over-fitting. Either more data can be recorded—which will require significant data
gathering activities and associated time investment—to overcome this problem, or the simulation environment could be used to
circumvent the effort. Preliminary results show that the good performance was achieved with LR, KNN and L-SVM. Both NB
and DT indicated some issues with training, and often had significantly lower performance than other algorithms. Finally, the
RBF kernel SVM was not completed by the time of writing of the paper and no accurate conclusions of this method can be made.

Since the simulation platform is validated through the process, more advanced studies are proposed for future research. For
example, the evaluation of a mixed real and spoofed scenarios, or to differentiate between spatially coherent signals caused by
multi-path effects and spatially coherent spoofed signals. Optimization of ML methods are also proposed for future research.

REFERENCES

[1] J. A. Volpe, “Vulnerability assessment of the transport infrastructure relying on the global positioning system,” U.S. DoT, 2001.

[2] A. Jafarnia-Jahromi, A. Broumandan, J. Nielsen, and G. Lachapelle, “GPS vulnerability to spoofing threats and a review of antispoofing
techniques,” International Journal of Navigation and Observation, vol. 2012, pp. 1–16, 2012.

[3] C4ADS, Above us only stars: Exposing GPS spoofing in Russia and Syria, 2019.

[4] Ajinkya, “How to play Pokemon Go without moving on Android,” 2019. https://devsjournal.com/how-to-play-pokemon-go-without-
moving-no-root-required.html.

[5] Spy Blog, “Road pricing GPS signal jammers? What about cheap GPS position spoofing devices?,” 2007.
https://spyblog.org.uk/ssl/spyblog/2007/08/09/road-pricing-gps-signal-jammers-what-about-cheap-gps-position-spoofing-devices.html.

[6] N. Ungerleider, “Spoofed satellite feeds trouble Google’s global fishing watch,” 2014. https://www.fastcompany.com/3038863/spoofed-
satellite-feeds-trouble-googles-global-fishing-watch.

[7] R. Mit, “GPS spoofing mystery affirms need for protection,” 2019. https://www.wardsauto.com/industry-voices/gps-spoofing-mystery-
affirms-need-protection.

[8] Associated Press, “Porch pirates beware: Amazon and new jersey police are planting fake packages with gps chips to catch thieves,” 2018.
https://www.businessinsider.com/amazon-police-team-up-fake-packages-gps-catch-porch-pirates-2018-12.

[9] T. Yasmin Mina, S. Bhamidipati, and G. Xingxin Gao, “Gps spoofing detection for the power grid network using a multireceiver hierar-
chical framework architecture,” NAVIGATION, vol. 66, no. 4, pp. 857–875, 2019.

[10] M. L. Psiaki and T. E. Humphreys, “GNSS spoofing and detection,” Proceedings of the IEEE, vol. 104, pp. 1258–1270, June 2016.
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